与えられた13個の関数をそれぞれ微分する問題です。解析学微分導関数三角関数指数関数対数関数2025/7/41. 問題の内容与えられた13個の関数をそれぞれ微分する問題です。2. 解き方の手順(1) y=2x−cosxy = 2x - \cos xy=2x−cosxy′=2−(−sinx)=2+sinxy' = 2 - (-\sin x) = 2 + \sin xy′=2−(−sinx)=2+sinx(2) y=sinx−tanxy = \sin x - \tan xy=sinx−tanxy′=cosx−1cos2xy' = \cos x - \frac{1}{\cos^2 x}y′=cosx−cos2x1(3) y=cos(2x−1)y = \cos(2x - 1)y=cos(2x−1)y′=−sin(2x−1)⋅2=−2sin(2x−1)y' = -\sin(2x - 1) \cdot 2 = -2\sin(2x - 1)y′=−sin(2x−1)⋅2=−2sin(2x−1)(4) y=tan3xy = \tan 3xy=tan3xy′=1cos23x⋅3=3cos23xy' = \frac{1}{\cos^2 3x} \cdot 3 = \frac{3}{\cos^2 3x}y′=cos23x1⋅3=cos23x3(5) y=cos3xy = \cos^3 xy=cos3xy′=3cos2x⋅(−sinx)=−3cos2xsinxy' = 3\cos^2 x \cdot (-\sin x) = -3\cos^2 x \sin xy′=3cos2x⋅(−sinx)=−3cos2xsinx(6) y=1cosx=(cosx)−1y = \frac{1}{\cos x} = (\cos x)^{-1}y=cosx1=(cosx)−1y′=−(cosx)−2⋅(−sinx)=sinxcos2x=1cosx⋅sinxcosx=secxtanxy' = -(\cos x)^{-2} \cdot (-\sin x) = \frac{\sin x}{\cos^2 x} = \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} = \sec x \tan xy′=−(cosx)−2⋅(−sinx)=cos2xsinx=cosx1⋅cosxsinx=secxtanx(7) y=sin3xcos5xy = \sin 3x \cos 5xy=sin3xcos5xy′=(cos3x⋅3)cos5x+sin3x(−sin5x⋅5)=3cos3xcos5x−5sin3xsin5xy' = (\cos 3x \cdot 3) \cos 5x + \sin 3x (-\sin 5x \cdot 5) = 3\cos 3x \cos 5x - 5\sin 3x \sin 5xy′=(cos3x⋅3)cos5x+sin3x(−sin5x⋅5)=3cos3xcos5x−5sin3xsin5x(8) y=log∣2x−12x+1∣=log∣2x−1∣−log∣2x+1∣y = \log\left|\frac{2x-1}{2x+1}\right| = \log|2x-1| - \log|2x+1|y=log2x+12x−1=log∣2x−1∣−log∣2x+1∣y′=22x−1−22x+1=2(2x+1)−2(2x−1)(2x−1)(2x+1)=4x+2−4x+24x2−1=44x2−1y' = \frac{2}{2x-1} - \frac{2}{2x+1} = \frac{2(2x+1) - 2(2x-1)}{(2x-1)(2x+1)} = \frac{4x+2-4x+2}{4x^2-1} = \frac{4}{4x^2-1}y′=2x−12−2x+12=(2x−1)(2x+1)2(2x+1)−2(2x−1)=4x2−14x+2−4x+2=4x2−14(9) y=e4xy = e^{4x}y=e4xy′=e4x⋅4=4e4xy' = e^{4x} \cdot 4 = 4e^{4x}y′=e4x⋅4=4e4x(10) y=(x+3)e−xy = (x+3)e^{-x}y=(x+3)e−xy′=e−x+(x+3)(−e−x)=e−x−xe−x−3e−x=−xe−x−2e−x=−(x+2)e−xy' = e^{-x} + (x+3)(-e^{-x}) = e^{-x} - xe^{-x} - 3e^{-x} = -xe^{-x} - 2e^{-x} = -(x+2)e^{-x}y′=e−x+(x+3)(−e−x)=e−x−xe−x−3e−x=−xe−x−2e−x=−(x+2)e−x(11) y=excosxy = e^x \cos xy=excosxy′=excosx+ex(−sinx)=ex(cosx−sinx)y' = e^x \cos x + e^x (-\sin x) = e^x(\cos x - \sin x)y′=excosx+ex(−sinx)=ex(cosx−sinx)(12) y=log2xy = \log 2xy=log2xy′=12x⋅2=1xy' = \frac{1}{2x} \cdot 2 = \frac{1}{x}y′=2x1⋅2=x1(13) y=34xy = 3^{4x}y=34xy′=34x⋅log3⋅4=4log3⋅34xy' = 3^{4x} \cdot \log 3 \cdot 4 = 4 \log 3 \cdot 3^{4x}y′=34x⋅log3⋅4=4log3⋅34x3. 最終的な答え(1) y′=2+sinxy' = 2 + \sin xy′=2+sinx(2) y′=cosx−1cos2xy' = \cos x - \frac{1}{\cos^2 x}y′=cosx−cos2x1(3) y′=−2sin(2x−1)y' = -2\sin(2x - 1)y′=−2sin(2x−1)(4) y′=3cos23xy' = \frac{3}{\cos^2 3x}y′=cos23x3(5) y′=−3cos2xsinxy' = -3\cos^2 x \sin xy′=−3cos2xsinx(6) y′=secxtanxy' = \sec x \tan xy′=secxtanx(7) y′=3cos3xcos5x−5sin3xsin5xy' = 3\cos 3x \cos 5x - 5\sin 3x \sin 5xy′=3cos3xcos5x−5sin3xsin5x(8) y′=44x2−1y' = \frac{4}{4x^2-1}y′=4x2−14(9) y′=4e4xy' = 4e^{4x}y′=4e4x(10) y′=−(x+2)e−xy' = -(x+2)e^{-x}y′=−(x+2)e−x(11) y′=ex(cosx−sinx)y' = e^x(\cos x - \sin x)y′=ex(cosx−sinx)(12) y′=1xy' = \frac{1}{x}y′=x1(13) y′=4log3⋅34xy' = 4 \log 3 \cdot 3^{4x}y′=4log3⋅34x