与えられた式 $2(3x^2 - 2x + 5) - 3(x^2 - x + 1) - (-x^2 + 4x - 7)$ を計算して簡単にします。

代数学多項式展開同類項
2025/7/4

1. 問題の内容

与えられた式 2(3x22x+5)3(x2x+1)(x2+4x7)2(3x^2 - 2x + 5) - 3(x^2 - x + 1) - (-x^2 + 4x - 7) を計算して簡単にします。

2. 解き方の手順

まず、それぞれの括弧を展開します。
2(3x22x+5)=6x24x+102(3x^2 - 2x + 5) = 6x^2 - 4x + 10
3(x2x+1)=3x2+3x3-3(x^2 - x + 1) = -3x^2 + 3x - 3
(x2+4x7)=x24x+7-(-x^2 + 4x - 7) = x^2 - 4x + 7
次に、これらの結果を元の式に代入します。
6x24x+103x2+3x3+x24x+76x^2 - 4x + 10 - 3x^2 + 3x - 3 + x^2 - 4x + 7
最後に、同類項をまとめます。
(6x23x2+x2)+(4x+3x4x)+(103+7)(6x^2 - 3x^2 + x^2) + (-4x + 3x - 4x) + (10 - 3 + 7)
=(63+1)x2+(4+34)x+(103+7)= (6 - 3 + 1)x^2 + (-4 + 3 - 4)x + (10 - 3 + 7)
=4x25x+14= 4x^2 - 5x + 14

3. 最終的な答え

4x25x+144x^2 - 5x + 14

「代数学」の関連問題

与えられた二次関数 $f(x) = x^2 - 6x + 10$ と $g(x) = -\frac{1}{2}x^2 + 8$ について、(1) $y=f(x)$ と $y=g(x)$ のグラフを描き...

二次関数グラフ最大値平方完成
2025/7/4

関数 $f(x) = x^2 - 6x + 10$ と $g(x) = \frac{1}{2}x^2 + 8$ が与えられています。 (1) $y = f(x)$ と $y = g(x)$ のグラフを...

二次関数グラフ最大値平方完成
2025/7/4

与えられた4x4行列の行列式を、第3行に沿った余因子展開を用いて計算する問題です。 行列は以下の通りです。 $ \begin{pmatrix} 2 & 3 & -4 & -5 \\ 3 & -2 & ...

線形代数行列式余因子展開行列
2025/7/4

数列$\{a_n\}$と$\{b_n\}$について、次の条件が与えられている。 * $\{a_n\}$は等差数列であり、$a_3 = 12$、$a_5 + a_8 = 52$を満たす。 * $\{b_...

数列等差数列シグマ
2025/7/4

1個120円の菓子Aと1個80円の菓子Bを合わせて30個買い、100円の箱に詰めてもらう。菓子代と箱代の合計金額を3000円以下にするとき、菓子Aは最大で何個買えるかという問題です。

不等式文章題一次不等式
2025/7/4

定数 $a$ が与えられたとき、関数 $y = x^2 - 2x + 1$ の区間 $a \leq x \leq a+1$ における最小値と最大値を求める問題です。

二次関数最大値最小値場合分け平方完成
2025/7/4

以下の5つの3次または4次方程式を解く問題です。 (1) $x^3 - 8 = 0$ (2) $x^4 - 4x^2 - 12 = 0$ (3) $x^3 - 2x^2 - x + 2 = 0$ (4...

方程式三次方程式四次方程式因数分解複素数
2025/7/4

与えられた方程式 $6x^2 + 7 = 28$ を解いて、$x$ の値を求めます。

二次方程式方程式平方根有理化
2025/7/4

不等式 $3x^4 - 4ax^3 - 6x^2 + 12ax + 7 \geq 0$ がすべての実数 $x$ に対して成り立つような $a$ の範囲を求めよ。

不等式四次関数微分最大・最小
2025/7/4

2次方程式 $x^2 + 3x + 5 = 0$ の2つの解を $\alpha$, $\beta$ とするとき、次の式の値を求める。 (1) $\alpha + \beta$ (2) $\alpha ...

二次方程式解と係数の関係解の計算
2025/7/4