関数 $y = \frac{x - \sqrt{x^2-1}}{x + \sqrt{x^2-1}}$ の導関数を求めよ。解析学導関数微分関数の微分分数関数2025/7/41. 問題の内容関数 y=x−x2−1x+x2−1y = \frac{x - \sqrt{x^2-1}}{x + \sqrt{x^2-1}}y=x+x2−1x−x2−1 の導関数を求めよ。2. 解き方の手順まず、与えられた関数を簡略化します。分子と分母に x−x2−1x - \sqrt{x^2-1}x−x2−1 を掛けます。y=x−x2−1x+x2−1⋅x−x2−1x−x2−1=(x−x2−1)2x2−(x2−1)=(x−x2−1)2y = \frac{x - \sqrt{x^2-1}}{x + \sqrt{x^2-1}} \cdot \frac{x - \sqrt{x^2-1}}{x - \sqrt{x^2-1}} = \frac{(x - \sqrt{x^2-1})^2}{x^2 - (x^2-1)} = (x - \sqrt{x^2-1})^2y=x+x2−1x−x2−1⋅x−x2−1x−x2−1=x2−(x2−1)(x−x2−1)2=(x−x2−1)2次に、この関数を微分します。y′=2(x−x2−1)⋅(1−12x2−1⋅2x)=2(x−x2−1)(1−xx2−1)=2(x−x2−1)(x2−1−xx2−1)y' = 2(x - \sqrt{x^2-1}) \cdot (1 - \frac{1}{2\sqrt{x^2-1}} \cdot 2x) = 2(x - \sqrt{x^2-1})(1 - \frac{x}{\sqrt{x^2-1}}) = 2(x - \sqrt{x^2-1})(\frac{\sqrt{x^2-1} - x}{\sqrt{x^2-1}})y′=2(x−x2−1)⋅(1−2x2−11⋅2x)=2(x−x2−1)(1−x2−1x)=2(x−x2−1)(x2−1x2−1−x)y′=2(x−x2−1)⋅−(x−x2−1)x2−1=−2(x−x2−1)2x2−1y' = 2(x - \sqrt{x^2-1}) \cdot \frac{-(x - \sqrt{x^2-1})}{\sqrt{x^2-1}} = -2 \frac{(x - \sqrt{x^2-1})^2}{\sqrt{x^2-1}}y′=2(x−x2−1)⋅x2−1−(x−x2−1)=−2x2−1(x−x2−1)2y′=−2x2−2xx2−1+x2−1x2−1=−22x2−1−2xx2−1x2−1y' = -2 \frac{x^2 - 2x\sqrt{x^2-1} + x^2 - 1}{\sqrt{x^2-1}} = -2 \frac{2x^2 - 1 - 2x\sqrt{x^2-1}}{\sqrt{x^2-1}}y′=−2x2−1x2−2xx2−1+x2−1=−2x2−12x2−1−2xx2−1また、y=(x−x2−1)2y = (x - \sqrt{x^2-1})^2y=(x−x2−1)2 を微分したとき、 y=x−x2−1x+x2−1y = \frac{x - \sqrt{x^2-1}}{x + \sqrt{x^2-1}}y=x+x2−1x−x2−1 なので、y′=−2yx2−1y' = -2\frac{y}{\sqrt{x^2 - 1}}y′=−2x2−1yy=x−x2−1x+x2−1y = \frac{x - \sqrt{x^2-1}}{x + \sqrt{x^2-1}}y=x+x2−1x−x2−1を代入すると、y′=−2⋅x−x2−1(x+x2−1)x2−1y' = -2 \cdot \frac{x - \sqrt{x^2-1}}{(x+\sqrt{x^2-1})\sqrt{x^2-1}}y′=−2⋅(x+x2−1)x2−1x−x2−13. 最終的な答えy′=−2⋅x−x2−1(x+x2−1)x2−1y' = -2 \cdot \frac{x - \sqrt{x^2-1}}{(x+\sqrt{x^2-1})\sqrt{x^2-1}}y′=−2⋅(x+x2−1)x2−1x−x2−1またはy′=−22x2−1−2xx2−1x2−1y' = -2 \frac{2x^2 - 1 - 2x\sqrt{x^2-1}}{\sqrt{x^2-1}}y′=−2x2−12x2−1−2xx2−1またはy′=−2(x−x2−1)2x2−1y' = -2 \frac{(x - \sqrt{x^2-1})^2}{\sqrt{x^2-1}}y′=−2x2−1(x−x2−1)2