関数 $y = x^3 + 3x^2 + 6x - 3$ の導関数 $y'$ を導関数の定義に従って求める問題です。解析学導関数微分の定義極限多項式2025/7/41. 問題の内容関数 y=x3+3x2+6x−3y = x^3 + 3x^2 + 6x - 3y=x3+3x2+6x−3 の導関数 y′y'y′ を導関数の定義に従って求める問題です。2. 解き方の手順導関数の定義は次の通りです。y′=limh→0f(x+h)−f(x)hy' = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}y′=limh→0hf(x+h)−f(x)今回の問題では、f(x)=x3+3x2+6x−3f(x) = x^3 + 3x^2 + 6x - 3f(x)=x3+3x2+6x−3 です。まず、f(x+h)f(x+h)f(x+h) を計算します。f(x+h)=(x+h)3+3(x+h)2+6(x+h)−3f(x+h) = (x+h)^3 + 3(x+h)^2 + 6(x+h) - 3f(x+h)=(x+h)3+3(x+h)2+6(x+h)−3展開して整理します。f(x+h)=x3+3x2h+3xh2+h3+3(x2+2xh+h2)+6x+6h−3f(x+h) = x^3 + 3x^2h + 3xh^2 + h^3 + 3(x^2 + 2xh + h^2) + 6x + 6h - 3f(x+h)=x3+3x2h+3xh2+h3+3(x2+2xh+h2)+6x+6h−3f(x+h)=x3+3x2h+3xh2+h3+3x2+6xh+3h2+6x+6h−3f(x+h) = x^3 + 3x^2h + 3xh^2 + h^3 + 3x^2 + 6xh + 3h^2 + 6x + 6h - 3f(x+h)=x3+3x2h+3xh2+h3+3x2+6xh+3h2+6x+6h−3次に、f(x+h)−f(x)f(x+h) - f(x)f(x+h)−f(x) を計算します。f(x+h)−f(x)=(x3+3x2h+3xh2+h3+3x2+6xh+3h2+6x+6h−3)−(x3+3x2+6x−3)f(x+h) - f(x) = (x^3 + 3x^2h + 3xh^2 + h^3 + 3x^2 + 6xh + 3h^2 + 6x + 6h - 3) - (x^3 + 3x^2 + 6x - 3)f(x+h)−f(x)=(x3+3x2h+3xh2+h3+3x2+6xh+3h2+6x+6h−3)−(x3+3x2+6x−3)f(x+h)−f(x)=3x2h+3xh2+h3+6xh+3h2+6hf(x+h) - f(x) = 3x^2h + 3xh^2 + h^3 + 6xh + 3h^2 + 6hf(x+h)−f(x)=3x2h+3xh2+h3+6xh+3h2+6hf(x+h)−f(x)h\frac{f(x+h) - f(x)}{h}hf(x+h)−f(x) を計算します。f(x+h)−f(x)h=3x2h+3xh2+h3+6xh+3h2+6hh\frac{f(x+h) - f(x)}{h} = \frac{3x^2h + 3xh^2 + h^3 + 6xh + 3h^2 + 6h}{h}hf(x+h)−f(x)=h3x2h+3xh2+h3+6xh+3h2+6hf(x+h)−f(x)h=3x2+3xh+h2+6x+3h+6\frac{f(x+h) - f(x)}{h} = 3x^2 + 3xh + h^2 + 6x + 3h + 6hf(x+h)−f(x)=3x2+3xh+h2+6x+3h+6最後に、limh→0f(x+h)−f(x)h\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}limh→0hf(x+h)−f(x) を計算します。y′=limh→0(3x2+3xh+h2+6x+3h+6)y' = \lim_{h \to 0} (3x^2 + 3xh + h^2 + 6x + 3h + 6)y′=limh→0(3x2+3xh+h2+6x+3h+6)y′=3x2+6x+6y' = 3x^2 + 6x + 6y′=3x2+6x+63. 最終的な答えy′=3x2+6x+6y' = 3x^2 + 6x + 6y′=3x2+6x+6