$u=u(x, y)$, $x=r\cos\theta$, $y=r\sin\theta$ のとき、以下の問いに答えます。 (1) $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial \theta}$ を $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ で表してください。 (2) $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ を $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial \theta}$ で表してください。 (3) $(\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2$ と $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ を $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial \theta}$ で表してください。

解析学偏微分連鎖律座標変換ラプラシアン
2025/7/4

1. 問題の内容

u=u(x,y)u=u(x, y), x=rcosθx=r\cos\theta, y=rsinθy=r\sin\theta のとき、以下の問いに答えます。
(1) ur\frac{\partial u}{\partial r}, uθ\frac{\partial u}{\partial \theta}ux\frac{\partial u}{\partial x}, uy\frac{\partial u}{\partial y} で表してください。
(2) ux\frac{\partial u}{\partial x}, uy\frac{\partial u}{\partial y}ur\frac{\partial u}{\partial r}, uθ\frac{\partial u}{\partial \theta} で表してください。
(3) (ux)2+(uy)2(\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^22ux2+2uy2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}ur\frac{\partial u}{\partial r}, uθ\frac{\partial u}{\partial \theta} で表してください。

2. 解き方の手順

(1) 連鎖律を用いると、
ur=uxxr+uyyr\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r}
uθ=uxxθ+uyyθ\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta}
x=rcosθx=r\cos\theta, y=rsinθy=r\sin\thetaより、
xr=cosθ\frac{\partial x}{\partial r} = \cos\theta
yr=sinθ\frac{\partial y}{\partial r} = \sin\theta
xθ=rsinθ\frac{\partial x}{\partial \theta} = -r\sin\theta
yθ=rcosθ\frac{\partial y}{\partial \theta} = r\cos\theta
よって、
ur=cosθux+sinθuy\frac{\partial u}{\partial r} = \cos\theta \frac{\partial u}{\partial x} + \sin\theta \frac{\partial u}{\partial y}
uθ=rsinθux+rcosθuy\frac{\partial u}{\partial \theta} = -r\sin\theta \frac{\partial u}{\partial x} + r\cos\theta \frac{\partial u}{\partial y}
(2) (1)の結果から、
ur=cosθux+sinθuy\frac{\partial u}{\partial r} = \cos\theta \frac{\partial u}{\partial x} + \sin\theta \frac{\partial u}{\partial y}
uθ=rsinθux+rcosθuy\frac{\partial u}{\partial \theta} = -r\sin\theta \frac{\partial u}{\partial x} + r\cos\theta \frac{\partial u}{\partial y}
この連立方程式をux\frac{\partial u}{\partial x}uy\frac{\partial u}{\partial y}について解きます。
urrcosθ=rcos2θux+rcosθsinθuy\frac{\partial u}{\partial r}\cdot r\cos\theta = r\cos^2\theta \frac{\partial u}{\partial x} + r\cos\theta\sin\theta \frac{\partial u}{\partial y}
uθsinθ=rsin2θux+rcosθsinθuy\frac{\partial u}{\partial \theta}\cdot \sin\theta = -r\sin^2\theta \frac{\partial u}{\partial x} + r\cos\theta\sin\theta \frac{\partial u}{\partial y}
Subtracting the second equation from the first yields:
rcosθursinθuθ=r(cos2θ+sin2θ)ux=ruxr\cos\theta \frac{\partial u}{\partial r} - \sin\theta \frac{\partial u}{\partial \theta} = r(\cos^2\theta + \sin^2\theta)\frac{\partial u}{\partial x} = r \frac{\partial u}{\partial x}
ux=cosθursinθruθ\frac{\partial u}{\partial x} = \cos\theta \frac{\partial u}{\partial r} - \frac{\sin\theta}{r} \frac{\partial u}{\partial \theta}
Similarly,
urrsinθ=rcosθsinθux+rsin2θuy\frac{\partial u}{\partial r}\cdot r\sin\theta = r\cos\theta\sin\theta \frac{\partial u}{\partial x} + r\sin^2\theta \frac{\partial u}{\partial y}
uθcosθ=rsinθcosθux+rcos2θuy\frac{\partial u}{\partial \theta}\cdot \cos\theta = -r\sin\theta\cos\theta \frac{\partial u}{\partial x} + r\cos^2\theta \frac{\partial u}{\partial y}
Adding the above two equations,
rsinθur+cosθuθ=r(sin2θ+cos2θ)uy=ruyr\sin\theta \frac{\partial u}{\partial r} + \cos\theta \frac{\partial u}{\partial \theta} = r(\sin^2\theta + \cos^2\theta)\frac{\partial u}{\partial y} = r \frac{\partial u}{\partial y}
uy=sinθur+cosθruθ\frac{\partial u}{\partial y} = \sin\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}
(3) (ux)2+(uy)2=(cosθursinθruθ)2+(sinθur+cosθruθ)2(\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2 = (\cos\theta \frac{\partial u}{\partial r} - \frac{\sin\theta}{r} \frac{\partial u}{\partial \theta})^2 + (\sin\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta})^2
=cos2θ(ur)22cosθsinθruruθ+sin2θr2(uθ)2+sin2θ(ur)2+2sinθcosθruruθ+cos2θr2(uθ)2= \cos^2\theta(\frac{\partial u}{\partial r})^2 - 2\cos\theta\frac{\sin\theta}{r}\frac{\partial u}{\partial r}\frac{\partial u}{\partial \theta} + \frac{\sin^2\theta}{r^2}(\frac{\partial u}{\partial \theta})^2 + \sin^2\theta(\frac{\partial u}{\partial r})^2 + 2\sin\theta\frac{\cos\theta}{r}\frac{\partial u}{\partial r}\frac{\partial u}{\partial \theta} + \frac{\cos^2\theta}{r^2}(\frac{\partial u}{\partial \theta})^2
=(cos2θ+sin2θ)(ur)2+(sin2θ+cos2θr2)(uθ)2= (\cos^2\theta+\sin^2\theta)(\frac{\partial u}{\partial r})^2 + (\frac{\sin^2\theta + \cos^2\theta}{r^2})(\frac{\partial u}{\partial \theta})^2
=(ur)2+1r2(uθ)2= (\frac{\partial u}{\partial r})^2 + \frac{1}{r^2}(\frac{\partial u}{\partial \theta})^2
2ux2+2uy2=2ur2+1rur+1r22uθ2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}

3. 最終的な答え

(1)
ur=cosθux+sinθuy\frac{\partial u}{\partial r} = \cos\theta \frac{\partial u}{\partial x} + \sin\theta \frac{\partial u}{\partial y}
uθ=rsinθux+rcosθuy\frac{\partial u}{\partial \theta} = -r\sin\theta \frac{\partial u}{\partial x} + r\cos\theta \frac{\partial u}{\partial y}
(2)
ux=cosθursinθruθ\frac{\partial u}{\partial x} = \cos\theta \frac{\partial u}{\partial r} - \frac{\sin\theta}{r} \frac{\partial u}{\partial \theta}
uy=sinθur+cosθruθ\frac{\partial u}{\partial y} = \sin\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}
(3)
(ux)2+(uy)2=(ur)2+1r2(uθ)2(\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2 = (\frac{\partial u}{\partial r})^2 + \frac{1}{r^2}(\frac{\partial u}{\partial \theta})^2
2ux2+2uy2=2ur2+1rur+1r22uθ2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}

「解析学」の関連問題

関数 $f(x) = \pi - |x|$ ($-\pi \leq x \leq \pi$) をフーリエ級数展開せよ。ただし、$f(x)$ は周期 $2\pi$ の周期関数である。

フーリエ級数周期関数積分三角関数
2025/7/4

与えられた5つの関数の極限を求める問題です。 (1) $\lim_{x \to 2} \frac{2\sqrt{x}-1-x}{x^2 - 4x + 4}$ (2) $\lim_{x \to \inf...

極限ロピタルの定理テイラー展開
2025/7/4

与えられた極限の計算問題を解きます。 (11) $\lim_{x\to 0} \frac{x^3+2x^2}{2x^4-3x^2}$ (12) $\lim_{x\to \infty} \frac{2x...

極限関数の極限三角関数対数関数
2025/7/4

2つの不定積分を求める問題です。 問題1: $\int \frac{1}{4 + x^2} dx$ を求め、$A \tan^{-1}(\frac{x}{B}) + C$ の形で答える。 問題2: $\...

積分不定積分置換積分tan関数指数関数
2025/7/4

$\int \cos 2x dx = \frac{1}{2} \sin 2x + C$

積分不定積分三角関数指数関数対数関数置換積分
2025/7/4

## 1. 問題の内容

不定積分積分置換積分
2025/7/4

1つ目の問題は、積分を含む微分に関する問題で、以下の式における(ア)と(イ)に当てはまる数値を求める問題です。 $\frac{d}{dx} \left( \int_{x}^{2x} \cos^2 t ...

積分微分不定積分三角関数定積分微分積分
2025/7/4

(1) $S = 1\cdot1 + 2\cdot4 + 3\cdot4^2 + \dots + n\cdot4^{n-1}$ (2) $S = 1 + \frac{2}{3} + \frac{3}{...

級数数列の和等比数列
2025/7/4

$\int \frac{1}{(3x+2)^3}dx$ を計算し、与えられた形式 $-\frac{\boxed{ア}}{\boxed{イ}(\boxed{ウ}x+\boxed{エ})^{\boxed{...

積分置換積分定積分
2025/7/4

次の不定積分を求め、空欄を埋める問題です。 $\int \frac{1}{\sqrt[3]{x+1}} dx = \frac{\boxed{ア}}{\boxed{イ}} (x + \boxed{ウ})...

積分不定積分置換積分
2025/7/4