(1) 連鎖律を用いると、
∂r∂u=∂x∂u∂r∂x+∂y∂u∂r∂y ∂θ∂u=∂x∂u∂θ∂x+∂y∂u∂θ∂y x=rcosθ, y=rsinθより、 ∂r∂x=cosθ ∂r∂y=sinθ ∂θ∂x=−rsinθ ∂θ∂y=rcosθ よって、
∂r∂u=cosθ∂x∂u+sinθ∂y∂u ∂θ∂u=−rsinθ∂x∂u+rcosθ∂y∂u (2) (1)の結果から、
∂r∂u=cosθ∂x∂u+sinθ∂y∂u ∂θ∂u=−rsinθ∂x∂u+rcosθ∂y∂u この連立方程式を∂x∂uと∂y∂uについて解きます。 ∂r∂u⋅rcosθ=rcos2θ∂x∂u+rcosθsinθ∂y∂u ∂θ∂u⋅sinθ=−rsin2θ∂x∂u+rcosθsinθ∂y∂u Subtracting the second equation from the first yields:
rcosθ∂r∂u−sinθ∂θ∂u=r(cos2θ+sin2θ)∂x∂u=r∂x∂u ∂x∂u=cosθ∂r∂u−rsinθ∂θ∂u Similarly,
∂r∂u⋅rsinθ=rcosθsinθ∂x∂u+rsin2θ∂y∂u ∂θ∂u⋅cosθ=−rsinθcosθ∂x∂u+rcos2θ∂y∂u Adding the above two equations,
rsinθ∂r∂u+cosθ∂θ∂u=r(sin2θ+cos2θ)∂y∂u=r∂y∂u ∂y∂u=sinθ∂r∂u+rcosθ∂θ∂u (3) (∂x∂u)2+(∂y∂u)2=(cosθ∂r∂u−rsinθ∂θ∂u)2+(sinθ∂r∂u+rcosθ∂θ∂u)2 =cos2θ(∂r∂u)2−2cosθrsinθ∂r∂u∂θ∂u+r2sin2θ(∂θ∂u)2+sin2θ(∂r∂u)2+2sinθrcosθ∂r∂u∂θ∂u+r2cos2θ(∂θ∂u)2 =(cos2θ+sin2θ)(∂r∂u)2+(r2sin2θ+cos2θ)(∂θ∂u)2 =(∂r∂u)2+r21(∂θ∂u)2 ∂x2∂2u+∂y2∂2u=∂r2∂2u+r1∂r∂u+r21∂θ2∂2u