与えられた2次方程式 $x^2 - 8x + 3 = 0$ を解く問題です。

代数学二次方程式解の公式平方根
2025/7/5

1. 問題の内容

与えられた2次方程式 x28x+3=0x^2 - 8x + 3 = 0 を解く問題です。

2. 解き方の手順

この2次方程式は因数分解できないため、解の公式を使用します。
2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解の公式は次のとおりです。
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
今回の問題では、a=1a=1, b=8b=-8, c=3c=3 です。これらの値を解の公式に代入します。
x=(8)±(8)24(1)(3)2(1)x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(3)}}{2(1)}
x=8±64122x = \frac{8 \pm \sqrt{64 - 12}}{2}
x=8±522x = \frac{8 \pm \sqrt{52}}{2}
52\sqrt{52} を簡略化します。52=413=213\sqrt{52} = \sqrt{4 \cdot 13} = 2\sqrt{13}.
したがって、
x=8±2132x = \frac{8 \pm 2\sqrt{13}}{2}
x=4±13x = 4 \pm \sqrt{13}

3. 最終的な答え

x=4+13x = 4 + \sqrt{13} または x=413x = 4 - \sqrt{13}

「代数学」の関連問題

数列 $2, 5, 14, 41, 122, 365, \dots$ の一般項 $a_n$ を求める問題です。ただし、数列の階差数列が初項1、公比3の等比数列であることがわかっています。与えられた式を...

数列一般項等比数列シグマ漸化式
2025/7/5

与えられた数列 $\{a_n\}$: 2, 5, 14, 41, 122, 365, ... の一般項を求める。ただし、階差数列が初項1、公比3の等比数列であることがわかっている。

数列一般項等比数列階差数列数学的帰納法
2025/7/5

数列 $\{a_n\}$ が与えられており、その一般項を求める問題です。数列は $2, 5, 14, 41, 122, 365, \dots$ です。

数列一般項等比数列階差数列和の公式
2025/7/5

数列 $2, 5, 14, 41, 122, 365, ...$ の一般項 $a_n$ を求めます。ただし、この数列の階差数列が、初項が1、公比が2の等比数列であるという条件が与えられています。そして...

数列等比数列階差数列一般項
2025/7/5

次の2つの2次式を、複素数の範囲で因数分解する。 (1) $x^2 - 4x - 3$ (2) $3x^2 - 2x + 3$

二次方程式因数分解複素数
2025/7/5

2次方程式 $x^2 + 3x + 4 = 0$ の2つの解を $\alpha$ と $\beta$ とするとき、$\alpha^2$ と $\beta^2$ を解とする2次方程式を1つ作成する。

二次方程式解と係数の関係解の変換
2025/7/5

2次方程式 $x^2 - 3x + 4 = 0$ の2つの解を $\alpha, \beta$ とするとき、以下の式の値を求めます。 (1) $(\alpha+1)(\beta+1)$ (2) $\a...

二次方程式解と係数の関係式の計算
2025/7/5

家から2km離れた駅まで、はじめは分速80mで歩き、途中から分速240mで走ったところ、駅に着くまでに17分かかりました。歩いた道のりと走った道のりをそれぞれ求める問題です。与えられた連立方程式を使っ...

連立方程式文章問題距離速度計算
2025/7/5

与えられた数式 $(x^2y + xy^2 - x) \div x$ を簡略化します。

式の簡略化多項式
2025/7/5

2次方程式 $x^2 - 2ax + 4 = 0$ が与えられた条件を満たすような $a$ の値の範囲を求める。ここでは、(1) 2解がともに1より大きい場合について考える。

二次方程式解の範囲放物線判別式不等式
2025/7/5