与えられた対数の式 $log_3 25 + 2log_3 \frac{3}{5}$ を計算し、その値を求める問題です。

代数学対数対数の性質計算
2025/7/6

1. 問題の内容

与えられた対数の式 log325+2log335log_3 25 + 2log_3 \frac{3}{5} を計算し、その値を求める問題です。

2. 解き方の手順

まず、対数の性質を用いて式を整理します。
(1) 2log3352log_3 \frac{3}{5} の係数2を対数の中に入れると、
log3(35)2=log3925log_3 (\frac{3}{5})^2 = log_3 \frac{9}{25}となります。
(2) 式全体はlog325+log3925log_3 25 + log_3 \frac{9}{25}となります。
対数の和は、真数のかけ算になるので、
log3(25×925)=log39log_3 (25 \times \frac{9}{25}) = log_3 9となります。
(3) 9=329 = 3^2なので、log39=log332=2log_3 9 = log_3 3^2 = 2となります。

3. 最終的な答え

2

「代数学」の関連問題

$(x^2 + x + 2)^5$ の展開式における $x^4$ の項の係数を求める問題です。

多項定理展開係数
2025/7/6

ある放物線を、$x$軸方向に$-1$, $y$軸方向に$-3$だけ平行移動し、さらに$x$軸に関して対称移動したところ、放物線 $y = x^2 - 2x + 2$ になった。元の放物線の方程式を求め...

放物線平行移動対称移動二次関数
2025/7/6

与えられた式 $x^3 - a^2$ を因数分解する。

因数分解式の展開多項式
2025/7/6

ある放物線を、x軸方向に-1、y軸方向に-3だけ平行移動し、更にx軸に関して対称移動したところ、放物線 $y=x^2-2x+2$ になった。もとの放物線の方程式を求める。

二次関数放物線平行移動対称移動
2025/7/6

ある放物線をx軸方向に-1, y軸方向に-3だけ平行移動し、更にx軸に関して対称移動したところ、放物線 $y = x^2 - 2x + 2$ になった。元の放物線の方程式を求めよ。

二次関数放物線平行移動対称移動
2025/7/6

## 1. 問題の内容

数列級数等差数列等比数列一般項
2025/7/6

与えられた6つの数式について、分母の有理化を行い、簡単にします。 (1) $\frac{3}{\sqrt{5}}$ (2) $\frac{4}{\sqrt{18}}$ (3) $\frac{1}{\s...

分母の有理化平方根の計算式の簡約化
2025/7/6

与えられた連分数の値を計算します。連分数は $1 / (1 - x / (1 - x/x))$ です。

分数連分数式の計算代数
2025/7/6

与えられた2つの2次関数について、グラフを描く問題です。 (1) $y = \frac{1}{2}x^2 + 2x$ (2) $y = \frac{1}{3}x^2 - \frac{4}{3}x + ...

二次関数グラフ平方完成放物線
2025/7/6

次の4つの不等式を解く問題です。 (1) $3^{3-x} > 9^x$ (2) $(\frac{1}{27})^x \ge (\frac{1}{3})^{x+1}$ (3) $(\frac{1}{3...

指数不等式指数法則
2025/7/6