二つの数 $a$, $b$ に対して, 新しい演算 $\bigcirc$ を $a \bigcirc b = 2ab$ と定義する。このとき, $6 \bigcirc 4$ を計算する。

代数学演算代入計算
2025/7/6

1. 問題の内容

二つの数 aa, bb に対して, 新しい演算 \bigcircab=2aba \bigcirc b = 2ab と定義する。このとき, 646 \bigcirc 4 を計算する。

2. 解き方の手順

演算 \bigcirc の定義に従って, a=6a=6, b=4b=4ab=2aba \bigcirc b = 2ab に代入する。
すると,
64=2×6×46 \bigcirc 4 = 2 \times 6 \times 4
となる。
これを計算すると、
2×6×4=12×4=482 \times 6 \times 4 = 12 \times 4 = 48
となる。

3. 最終的な答え

48

「代数学」の関連問題

$(x^2 + x + 2)^5$ の展開式における $x^4$ の項の係数を求める問題です。

多項定理展開係数
2025/7/6

ある放物線を、$x$軸方向に$-1$, $y$軸方向に$-3$だけ平行移動し、さらに$x$軸に関して対称移動したところ、放物線 $y = x^2 - 2x + 2$ になった。元の放物線の方程式を求め...

放物線平行移動対称移動二次関数
2025/7/6

与えられた式 $x^3 - a^2$ を因数分解する。

因数分解式の展開多項式
2025/7/6

ある放物線を、x軸方向に-1、y軸方向に-3だけ平行移動し、更にx軸に関して対称移動したところ、放物線 $y=x^2-2x+2$ になった。もとの放物線の方程式を求める。

二次関数放物線平行移動対称移動
2025/7/6

ある放物線をx軸方向に-1, y軸方向に-3だけ平行移動し、更にx軸に関して対称移動したところ、放物線 $y = x^2 - 2x + 2$ になった。元の放物線の方程式を求めよ。

二次関数放物線平行移動対称移動
2025/7/6

## 1. 問題の内容

数列級数等差数列等比数列一般項
2025/7/6

与えられた6つの数式について、分母の有理化を行い、簡単にします。 (1) $\frac{3}{\sqrt{5}}$ (2) $\frac{4}{\sqrt{18}}$ (3) $\frac{1}{\s...

分母の有理化平方根の計算式の簡約化
2025/7/6

与えられた連分数の値を計算します。連分数は $1 / (1 - x / (1 - x/x))$ です。

分数連分数式の計算代数
2025/7/6

与えられた2つの2次関数について、グラフを描く問題です。 (1) $y = \frac{1}{2}x^2 + 2x$ (2) $y = \frac{1}{3}x^2 - \frac{4}{3}x + ...

二次関数グラフ平方完成放物線
2025/7/6

次の4つの不等式を解く問題です。 (1) $3^{3-x} > 9^x$ (2) $(\frac{1}{27})^x \ge (\frac{1}{3})^{x+1}$ (3) $(\frac{1}{3...

指数不等式指数法則
2025/7/6