公比が2で、第4項が1である等比数列について、以下の問いに答えます。 (1) 初項を求めます。 (2) 初項から第8項までの和を求めます。

代数学等比数列数列級数初項
2025/7/7

1. 問題の内容

公比が2で、第4項が1である等比数列について、以下の問いに答えます。
(1) 初項を求めます。
(2) 初項から第8項までの和を求めます。

2. 解き方の手順

(1) 初項をaaとすると、第nn項はarn1ar^{n-1}で表されます。ここで、rrは公比です。
第4項が1なので、
ar41=1ar^{4-1} = 1
a23=1a \cdot 2^3 = 1
8a=18a = 1
a=18a = \frac{1}{8}
(2) 初項から第nn項までの和SnS_nは、Sn=a(rn1)r1S_n = \frac{a(r^n - 1)}{r - 1}で表されます。
初項から第8項までの和を求めたいので、n=8n=8として代入します。
S8=18(281)21S_8 = \frac{\frac{1}{8}(2^8 - 1)}{2 - 1}
S8=18(2561)1S_8 = \frac{\frac{1}{8}(256 - 1)}{1}
S8=18255S_8 = \frac{1}{8} \cdot 255
S8=2558S_8 = \frac{255}{8}

3. 最終的な答え

(1) 初項: 18\frac{1}{8}
(2) 初項から第8項までの和: 2558\frac{255}{8}

「代数学」の関連問題

与えられた3つの式を簡単にします。 (1) $2^{\log_2 3}$ (2) $10^{\log_{10} \sqrt{2}}$ (3) $10^{-\log_{100} 2}$

対数指数対数の性質底の変換有理化
2025/7/7

与えられた3つの式を簡単にします。 (1) $2^{\log_{3}9}$ (2) $100^{\log_{10}\sqrt{2}}$ (3) $10^{-\log_{100}2}$

対数指数計算
2025/7/7

与えられた条件を満たす2次関数を求めます。具体的には、 (2) $x=-2$ で最大値1をとり、点$(-1, -1)$ を通る2次関数を求めます。 (3) 3点 $(1, 5), (2, 1), (-...

二次関数2次関数最大値3点を通る
2025/7/7

軸が $x=3$ であり、2点 $(1, -2)$ と $(0, -7)$ を通る放物線をグラフにもつ2次関数を求める問題です。

二次関数放物線関数の決定グラフ
2025/7/7

\[2] 次の方程式を解け (1) $\frac{3}{2}x - \frac{1}{4} = \frac{5}{8}x$ (2) $\frac{15}{7} - \frac{3x}{14} = \f...

一次方程式文章問題割合
2025/7/7

関数 $y = x^2 - 2ax + a^2 + 1$ の $0 \leq x \leq 3$ における最小値を、$a$ の値によって場合分けして求めます。

二次関数最大最小場合分け平方完成
2025/7/7

与えられた行列 $A = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$ による線形写像 $y = Ax$ によって、次の不等式で表される領域がどのような領...

線形代数線形写像行列領域変換一次変換
2025/7/7

与えられた行列 $ \begin{pmatrix} 2 & 4 & 1 \\ 1 & -2 & 1 \\ 0 & 5 & -1 \end{pmatrix} $ の余因子行列と逆行列を求める問題です。

行列余因子行列逆行列行列式
2025/7/7

与えられた正方行列 $A$ に対して、$T = T_A$ とおきます。このとき、 (i) $A$ の固有多項式 $g_T(t)$ を求めよ。 (ii) $T$ の固有値 $\lambda$ を求めよ。...

線形代数固有値固有ベクトル行列固有多項式
2025/7/7

与えられた行列 $A = \begin{bmatrix} 7 & 12 & 0 \\ -2 & -3 & 0 \\ 2 & 4 & 1 \end{bmatrix}$ に対して、$T=T_A$ とおいた...

線形代数固有値固有ベクトル固有多項式行列
2025/7/7