2次方程式 $x^2 + (m+2)x + m+5 = 0$ が重解を持つとき、定数 $m$ の値を求め、そのときの重解を求める。

代数学二次方程式判別式重解因数分解
2025/7/7

1. 問題の内容

2次方程式 x2+(m+2)x+m+5=0x^2 + (m+2)x + m+5 = 0 が重解を持つとき、定数 mm の値を求め、そのときの重解を求める。

2. 解き方の手順

2次方程式が重解を持つ条件は、判別式 DDD=0D=0 となることです。
与えられた2次方程式の判別式 DD は、
D=(m+2)24(1)(m+5)D = (m+2)^2 - 4(1)(m+5)
となります。
D=m2+4m+44m20D = m^2 + 4m + 4 - 4m - 20
D=m216D = m^2 - 16
重解を持つためには D=0D=0 でなければならないので、
m216=0m^2 - 16 = 0
(m4)(m+4)=0(m-4)(m+4) = 0
したがって、m=4m = 4 または m=4m = -4
(i) m=4m = 4 のとき、2次方程式は
x2+(4+2)x+4+5=0x^2 + (4+2)x + 4+5 = 0
x2+6x+9=0x^2 + 6x + 9 = 0
(x+3)2=0(x+3)^2 = 0
x=3x = -3 (重解)
(ii) m=4m = -4 のとき、2次方程式は
x2+(4+2)x+(4)+5=0x^2 + (-4+2)x + (-4)+5 = 0
x22x+1=0x^2 - 2x + 1 = 0
(x1)2=0(x-1)^2 = 0
x=1x = 1 (重解)

3. 最終的な答え

m=4m = 4 のとき、重解は x=3x = -3
m=4m = -4 のとき、重解は x=1x = 1

「代数学」の関連問題

与えられた3つの式を簡単にします。 (1) $2^{\log_2 3}$ (2) $10^{\log_{10} \sqrt{2}}$ (3) $10^{-\log_{100} 2}$

対数指数対数の性質底の変換有理化
2025/7/7

与えられた3つの式を簡単にします。 (1) $2^{\log_{3}9}$ (2) $100^{\log_{10}\sqrt{2}}$ (3) $10^{-\log_{100}2}$

対数指数計算
2025/7/7

与えられた条件を満たす2次関数を求めます。具体的には、 (2) $x=-2$ で最大値1をとり、点$(-1, -1)$ を通る2次関数を求めます。 (3) 3点 $(1, 5), (2, 1), (-...

二次関数2次関数最大値3点を通る
2025/7/7

軸が $x=3$ であり、2点 $(1, -2)$ と $(0, -7)$ を通る放物線をグラフにもつ2次関数を求める問題です。

二次関数放物線関数の決定グラフ
2025/7/7

\[2] 次の方程式を解け (1) $\frac{3}{2}x - \frac{1}{4} = \frac{5}{8}x$ (2) $\frac{15}{7} - \frac{3x}{14} = \f...

一次方程式文章問題割合
2025/7/7

関数 $y = x^2 - 2ax + a^2 + 1$ の $0 \leq x \leq 3$ における最小値を、$a$ の値によって場合分けして求めます。

二次関数最大最小場合分け平方完成
2025/7/7

与えられた行列 $A = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$ による線形写像 $y = Ax$ によって、次の不等式で表される領域がどのような領...

線形代数線形写像行列領域変換一次変換
2025/7/7

与えられた行列 $ \begin{pmatrix} 2 & 4 & 1 \\ 1 & -2 & 1 \\ 0 & 5 & -1 \end{pmatrix} $ の余因子行列と逆行列を求める問題です。

行列余因子行列逆行列行列式
2025/7/7

与えられた正方行列 $A$ に対して、$T = T_A$ とおきます。このとき、 (i) $A$ の固有多項式 $g_T(t)$ を求めよ。 (ii) $T$ の固有値 $\lambda$ を求めよ。...

線形代数固有値固有ベクトル行列固有多項式
2025/7/7

与えられた行列 $A = \begin{bmatrix} 7 & 12 & 0 \\ -2 & -3 & 0 \\ 2 & 4 & 1 \end{bmatrix}$ に対して、$T=T_A$ とおいた...

線形代数固有値固有ベクトル固有多項式行列
2025/7/7