$x = \frac{\sqrt{7} + \sqrt{3}}{2}$、$y = \frac{\sqrt{7} - \sqrt{3}}{2}$ のとき、$x^2 - 3xy + y^2$ の値を求めよ。

代数学式の計算平方根展開因数分解
2025/7/7

1. 問題の内容

x=7+32x = \frac{\sqrt{7} + \sqrt{3}}{2}y=732y = \frac{\sqrt{7} - \sqrt{3}}{2} のとき、x23xy+y2x^2 - 3xy + y^2 の値を求めよ。

2. 解き方の手順

まず、xxyy の和と積を計算します。
x+y=7+32+732=272=7x+y = \frac{\sqrt{7} + \sqrt{3}}{2} + \frac{\sqrt{7} - \sqrt{3}}{2} = \frac{2\sqrt{7}}{2} = \sqrt{7}
xy=7+32732=(7)2(3)24=734=44=1xy = \frac{\sqrt{7} + \sqrt{3}}{2} \cdot \frac{\sqrt{7} - \sqrt{3}}{2} = \frac{(\sqrt{7})^2 - (\sqrt{3})^2}{4} = \frac{7 - 3}{4} = \frac{4}{4} = 1
次に、x23xy+y2x^2 - 3xy + y^2(x+y)(x+y)xyxy を用いて表します。
x23xy+y2=(x2+2xy+y2)5xy=(x+y)25xyx^2 - 3xy + y^2 = (x^2 + 2xy + y^2) - 5xy = (x+y)^2 - 5xy
x+y=7x+y = \sqrt{7} より (x+y)2=(7)2=7(x+y)^2 = (\sqrt{7})^2 = 7
xy=1xy = 1 より 5xy=5(1)=55xy = 5(1) = 5
よって、x23xy+y2=(x+y)25xy=75=2x^2 - 3xy + y^2 = (x+y)^2 - 5xy = 7 - 5 = 2

3. 最終的な答え

2

「代数学」の関連問題

関数 $y = x^2 + 2x - 1$ において、$x$ が $a$ から $b$ まで変化するときの平均変化率を求める問題です。

二次関数平均変化率式の展開因数分解
2025/7/7

$13.5^n$ の整数部分が4桁であるような整数 $n$ の個数を求める。ただし、$\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ とする。

対数指数常用対数不等式
2025/7/7

1次変換 $f$ によって、点 $P(1,1)$ と点 $Q(1,3)$ がどちらも点 $R(4,1)$ に移されるとき、$f$ に逆変換が存在するかどうかを調べる問題です。

線形代数一次変換行列行列式逆変換
2025/7/7

$3.75^n$ の整数部分が3桁であるような整数 $n$ の個数を求める問題です。ただし、$\log_{10}2 = 0.3010$、$\log_{10}3 = 0.4771$とします。

対数不等式指数
2025/7/7

不等式 $(\frac{1}{3})^n < 0.001$ を満たす最小の整数 $n$ を求める問題です。ただし、$\log_{10}2 = 0.3010$ および $\log_{10}3 = 0.4...

不等式対数指数常用対数数値計算
2025/7/7

不等式 $(\frac{1}{2})^n < 0.01$ を満たす最小の整数 $n$ を求める問題です。ただし、$\log_{10}2 = 0.3010$ とします。

不等式対数指数常用対数
2025/7/7

不等式 $2^n < 1000$ を満たす最大の整数 $n$ を求める問題です。ただし、$\log_{10} 2 = 0.3010$ と $\log_{10} 3 = 0.4771$ が与えられていま...

不等式対数指数常用対数
2025/7/7

問題47.3: 1次変換 $f$ を表す行列を $A = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$ とする。$f$によって点 $P'(1,2)$ に移...

線形代数一次変換行列逆行列連立一次方程式
2025/7/7

与えられた3つの対数 $\log_{\frac{1}{2}} \frac{1}{9}$, $\log_{\frac{1}{4}} \frac{1}{3}$, $\log_{\frac{1}{8}} 3...

対数対数関数不等式大小比較
2025/7/7

$log_{0.5} 0.5$, $log_{0.5} 0.25$, $0$ を値の小さい順に並べます。

対数大小比較
2025/7/7