定積分 $\int_1^2 (x + \frac{3}{x^2}) dx$ を計算します。解析学定積分積分三角関数積分計算2025/7/7## 問題11. 問題の内容定積分 ∫12(x+3x2)dx\int_1^2 (x + \frac{3}{x^2}) dx∫12(x+x23)dx を計算します。2. 解き方の手順まず、積分を計算します。∫(x+3x2)dx=∫(x+3x−2)dx\int (x + \frac{3}{x^2}) dx = \int (x + 3x^{-2}) dx∫(x+x23)dx=∫(x+3x−2)dx=x22+3x−1−1+C=x22−3x+C= \frac{x^2}{2} + 3\frac{x^{-1}}{-1} + C = \frac{x^2}{2} - \frac{3}{x} + C=2x2+3−1x−1+C=2x2−x3+C次に、定積分を計算します。∫12(x+3x2)dx=[x22−3x]12\int_1^2 (x + \frac{3}{x^2}) dx = [\frac{x^2}{2} - \frac{3}{x}]_1^2∫12(x+x23)dx=[2x2−x3]12=(222−32)−(122−31)= (\frac{2^2}{2} - \frac{3}{2}) - (\frac{1^2}{2} - \frac{3}{1})=(222−23)−(212−13)=(2−32)−(12−3)= (2 - \frac{3}{2}) - (\frac{1}{2} - 3)=(2−23)−(21−3)=12−(−52)=12+52=62=3= \frac{1}{2} - (-\frac{5}{2}) = \frac{1}{2} + \frac{5}{2} = \frac{6}{2} = 3=21−(−25)=21+25=26=33. 最終的な答え∫12(x+3x2)dx=3\int_1^2 (x + \frac{3}{x^2}) dx = 3∫12(x+x23)dx=3## 問題21. 問題の内容定積分 ∫π3π6(sinx+3cosx)dx\int_{\frac{\pi}{3}}^{\frac{\pi}{6}} (\sin x + \sqrt{3} \cos x) dx∫3π6π(sinx+3cosx)dx を計算します。2. 解き方の手順まず、積分を計算します。∫(sinx+3cosx)dx=−cosx+3sinx+C\int (\sin x + \sqrt{3} \cos x) dx = -\cos x + \sqrt{3} \sin x + C∫(sinx+3cosx)dx=−cosx+3sinx+C次に、定積分を計算します。∫π3π6(sinx+3cosx)dx=[−cosx+3sinx]π3π6\int_{\frac{\pi}{3}}^{\frac{\pi}{6}} (\sin x + \sqrt{3} \cos x) dx = [-\cos x + \sqrt{3} \sin x]_{\frac{\pi}{3}}^{\frac{\pi}{6}}∫3π6π(sinx+3cosx)dx=[−cosx+3sinx]3π6π=(−cos(π6)+3sin(π6))−(−cos(π3)+3sin(π3))= (-\cos(\frac{\pi}{6}) + \sqrt{3} \sin(\frac{\pi}{6})) - (-\cos(\frac{\pi}{3}) + \sqrt{3} \sin(\frac{\pi}{3}))=(−cos(6π)+3sin(6π))−(−cos(3π)+3sin(3π))=(−32+3⋅12)−(−12+3⋅32)= (-\frac{\sqrt{3}}{2} + \sqrt{3} \cdot \frac{1}{2}) - (-\frac{1}{2} + \sqrt{3} \cdot \frac{\sqrt{3}}{2})=(−23+3⋅21)−(−21+3⋅23)=(−32+32)−(−12+32)= (-\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}) - (-\frac{1}{2} + \frac{3}{2})=(−23+23)−(−21+23)=0−(22)=−1= 0 - (\frac{2}{2}) = -1=0−(22)=−13. 最終的な答え∫π3π6(sinx+3cosx)dx=−1\int_{\frac{\pi}{3}}^{\frac{\pi}{6}} (\sin x + \sqrt{3} \cos x) dx = -1∫3π6π(sinx+3cosx)dx=−1## 問題31. 問題の内容定積分 ∫π3π6(sinx+3cosx)dx\int_{\frac{\pi}{3}}^{\frac{\pi}{6}} (\sin x + \sqrt{3} \cos x) dx∫3π6π(sinx+3cosx)dx を、三角関数を合成して計算します。2. 解き方の手順sinx+3cosx=2(12sinx+32cosx)=2(cos(π3)sinx+sin(π3)cosx)=2sin(x+π3)\sin x + \sqrt{3} \cos x = 2(\frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x) = 2(\cos(\frac{\pi}{3}) \sin x + \sin(\frac{\pi}{3}) \cos x) = 2 \sin(x + \frac{\pi}{3})sinx+3cosx=2(21sinx+23cosx)=2(cos(3π)sinx+sin(3π)cosx)=2sin(x+3π)∫π3π6(sinx+3cosx)dx=∫π3π62sin(x+π3)dx\int_{\frac{\pi}{3}}^{\frac{\pi}{6}} (\sin x + \sqrt{3} \cos x) dx = \int_{\frac{\pi}{3}}^{\frac{\pi}{6}} 2 \sin(x + \frac{\pi}{3}) dx∫3π6π(sinx+3cosx)dx=∫3π6π2sin(x+3π)dx=[−2cos(x+π3)]π3π6= [-2 \cos(x + \frac{\pi}{3})]_{\frac{\pi}{3}}^{\frac{\pi}{6}}=[−2cos(x+3π)]3π6π=−2cos(π6+π3)−(−2cos(π3+π3))= -2 \cos(\frac{\pi}{6} + \frac{\pi}{3}) - (-2 \cos(\frac{\pi}{3} + \frac{\pi}{3}))=−2cos(6π+3π)−(−2cos(3π+3π))=−2cos(π2)+2cos(2π3)= -2 \cos(\frac{\pi}{2}) + 2 \cos(\frac{2\pi}{3})=−2cos(2π)+2cos(32π)=−2(0)+2(−12)=−1= -2(0) + 2(-\frac{1}{2}) = -1=−2(0)+2(−21)=−13. 最終的な答え∫π3π6(sinx+3cosx)dx=−1\int_{\frac{\pi}{3}}^{\frac{\pi}{6}} (\sin x + \sqrt{3} \cos x) dx = -1∫3π6π(sinx+3cosx)dx=−1