問題は、次の等式における「コサ」と「シ」に入る数字を求める問題です。 $\sum_{k=1}^{n} (-2)^{k-1} = \frac{1 - (\text{コサ})^n}{\text{シ}}$
2025/7/7
1. 問題の内容
問題は、次の等式における「コサ」と「シ」に入る数字を求める問題です。
2. 解き方の手順
左辺は初項1、公比-2の等比数列の和なので、等比数列の和の公式を用いて計算します。
等比数列の和の公式は、初項を、公比を、項数をとすると、
です。
今回の場合は、、なので、
となります。
したがって、
なので、「コサ」は-2、「シ」は3となります。
3. 最終的な答え
コサ:-2
シ:3