6個の数字 1, 1, 1, 2, 2, 3 をすべて使って作れる6桁の数は何個あるか求める問題です。

算数順列組み合わせ重複順列場合の数
2025/7/7

1. 問題の内容

6個の数字 1, 1, 1, 2, 2, 3 をすべて使って作れる6桁の数は何個あるか求める問題です。

2. 解き方の手順

これは、同じものを含む順列の問題です。
6個の数字を並べる順列の総数は 6!6! です。しかし、1が3個、2が2個あるため、これらの重複を考慮する必要があります。
1が3個あるので、3!3!で割ります。
2が2個あるので、2!2!で割ります。
したがって、異なる6桁の数の総数は次のようになります。
6!3!2!=6×5×4×3×2×1(3×2×1)(2×1)=72012=60\frac{6!}{3!2!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(2 \times 1)} = \frac{720}{12} = 60

3. 最終的な答え

60個

「算数」の関連問題

組み合わせの計算問題です。以下の6つの値を求めます。 (1) $ _6C_3 $ (2) $ _7C_7 $ (3) $ _7C_1 $ (4) $ _5C_0 $ (5) $ _{50}C_{47}...

組み合わせ順列二項係数
2025/7/7

0, 1, 2, 3, 4, 5の6個の数字から異なる4個の数字を選んで並べ、4桁の整数を作る。次の問いに答えよ。 (1) 整数は何個できるか。 (2) 3の倍数は何個できるか。 (3) 6の倍数は何...

順列組み合わせ場合の数円順列辞書式順
2025/7/7

6個の数字 1, 2, 3, 4, 5, 6 のうち、異なる3個を並べて3桁の偶数を作る時、何個の偶数が作れるか。

場合の数順列偶数3桁の数
2025/7/7

$p$ の値を求める問題です。 与えられた式は $p = \frac{10}{1.0 \times 10^{-2}}$ です。

分数指数四則演算
2025/7/7

与えられた数式の値を計算します。数式は以下の通りです。 $ \frac{1^2 + (\sqrt{3})^2}{1 \times \sqrt{3}} $

四則演算平方根有理化計算
2025/7/7

$\frac{\sqrt{3}}{1} + \frac{1}{\sqrt{3}}$ を計算し、可能な限り簡単にする問題です。

分数平方根有理化計算
2025/7/7

$\sqrt{3}$ の整数部分を $a$, 小数部分を $b$ とするとき、以下の問題を解きます。 (1) $a$ と $b$ の値を求めます。 (2) $a^2 + b^2$ の値を求めます。 (...

平方根有理化計算
2025/7/7

$\sqrt{5}$ の整数部分を $a$、小数部分を $b$ とするとき、以下の問いに答える。 (1) $a$ と $b$ の値を求める。 (2) $a^2 + b^2$ の値を求める。 (3) $...

平方根有理化計算
2025/7/7

$\sqrt{3}$の整数部分を$a$、小数部分を$b$とするとき、以下の問いに答えます。 (1) $a$と$b$の値を求めます。 (2) (1)の結果を利用して、$a^2 + b^2$の値を求めます...

平方根整数部分小数部分計算
2025/7/7

AさんとBさんの会話形式で、$\sqrt{3}$の整数部分と小数部分に関する問題について、いくつかの空欄を埋める。具体的には、$\sqrt{3}$の近似値、整数部分、小数部分を求め、それらを用いて$a...

平方根近似値有理化式の計算
2025/7/7