関数 $y = \sin^2(3x + \frac{\pi}{5})$ を微分せよ。解析学微分三角関数合成関数2倍角の公式2025/7/71. 問題の内容関数 y=sin2(3x+π5)y = \sin^2(3x + \frac{\pi}{5})y=sin2(3x+5π) を微分せよ。2. 解き方の手順合成関数の微分法を用いる。まず、y=u2y = u^2y=u2 と u=sin(v)u = \sin(v)u=sin(v) と v=3x+π5v = 3x + \frac{\pi}{5}v=3x+5π と置く。すると、dydx=dydu⋅dudv⋅dvdx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}dxdy=dudy⋅dvdu⋅dxdvとなる。dydu=2u=2sin(3x+π5)\frac{dy}{du} = 2u = 2\sin(3x + \frac{\pi}{5})dudy=2u=2sin(3x+5π)dudv=cos(v)=cos(3x+π5)\frac{du}{dv} = \cos(v) = \cos(3x + \frac{\pi}{5})dvdu=cos(v)=cos(3x+5π)dvdx=3\frac{dv}{dx} = 3dxdv=3したがって、dydx=2sin(3x+π5)⋅cos(3x+π5)⋅3\frac{dy}{dx} = 2\sin(3x + \frac{\pi}{5}) \cdot \cos(3x + \frac{\pi}{5}) \cdot 3dxdy=2sin(3x+5π)⋅cos(3x+5π)⋅3=6sin(3x+π5)cos(3x+π5) = 6\sin(3x + \frac{\pi}{5})\cos(3x + \frac{\pi}{5})=6sin(3x+5π)cos(3x+5π)三角関数の2倍角の公式 sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin\theta\cos\thetasin(2θ)=2sinθcosθ を用いると、=3⋅2sin(3x+π5)cos(3x+π5) = 3 \cdot 2 \sin(3x + \frac{\pi}{5})\cos(3x + \frac{\pi}{5})=3⋅2sin(3x+5π)cos(3x+5π)=3sin(2(3x+π5)) = 3 \sin(2(3x + \frac{\pi}{5}))=3sin(2(3x+5π))=3sin(6x+2π5) = 3 \sin(6x + \frac{2\pi}{5})=3sin(6x+52π)3. 最終的な答えdydx=3sin(6x+2π5)\frac{dy}{dx} = 3 \sin(6x + \frac{2\pi}{5})dxdy=3sin(6x+52π)