$\int \log(x^2 + 1) dx$ を計算する。解析学積分部分積分対数関数arctan2025/7/81. 問題の内容∫log(x2+1)dx\int \log(x^2 + 1) dx∫log(x2+1)dx を計算する。2. 解き方の手順部分積分を使って解きます。u=log(x2+1)u = \log(x^2 + 1)u=log(x2+1)、 dv=dxdv = dxdv=dx とおくと、du=2xx2+1dxdu = \frac{2x}{x^2 + 1} dxdu=x2+12xdx、 v=xv = xv=x となります。部分積分の公式 ∫u dv=uv−∫v du\int u \, dv = uv - \int v \, du∫udv=uv−∫vdu を用いると、∫log(x2+1)dx=xlog(x2+1)−∫x⋅2xx2+1dx\int \log(x^2 + 1) dx = x \log(x^2 + 1) - \int x \cdot \frac{2x}{x^2 + 1} dx∫log(x2+1)dx=xlog(x2+1)−∫x⋅x2+12xdx∫log(x2+1)dx=xlog(x2+1)−2∫x2x2+1dx\int \log(x^2 + 1) dx = x \log(x^2 + 1) - 2 \int \frac{x^2}{x^2 + 1} dx∫log(x2+1)dx=xlog(x2+1)−2∫x2+1x2dxここで、∫x2x2+1dx\int \frac{x^2}{x^2 + 1} dx∫x2+1x2dx を計算します。x2x2+1=x2+1−1x2+1=1−1x2+1\frac{x^2}{x^2 + 1} = \frac{x^2 + 1 - 1}{x^2 + 1} = 1 - \frac{1}{x^2 + 1}x2+1x2=x2+1x2+1−1=1−x2+11したがって、∫x2x2+1dx=∫(1−1x2+1)dx=x−arctan(x)+C\int \frac{x^2}{x^2 + 1} dx = \int \left( 1 - \frac{1}{x^2 + 1} \right) dx = x - \arctan(x) + C∫x2+1x2dx=∫(1−x2+11)dx=x−arctan(x)+Cこれを代入すると、∫log(x2+1)dx=xlog(x2+1)−2(x−arctan(x))+C\int \log(x^2 + 1) dx = x \log(x^2 + 1) - 2(x - \arctan(x)) + C∫log(x2+1)dx=xlog(x2+1)−2(x−arctan(x))+C∫log(x2+1)dx=xlog(x2+1)−2x+2arctan(x)+C\int \log(x^2 + 1) dx = x \log(x^2 + 1) - 2x + 2 \arctan(x) + C∫log(x2+1)dx=xlog(x2+1)−2x+2arctan(x)+C3. 最終的な答えxlog(x2+1)−2x+2arctan(x)+Cx \log(x^2 + 1) - 2x + 2 \arctan(x) + Cxlog(x2+1)−2x+2arctan(x)+C