$\int \frac{dx}{(x^2 + 1)^2}$ を求める問題です。ただし、漸化式を利用して解く必要があります。解析学積分漸化式部分積分不定積分2025/7/81. 問題の内容∫dx(x2+1)2\int \frac{dx}{(x^2 + 1)^2}∫(x2+1)2dx を求める問題です。ただし、漸化式を利用して解く必要があります。2. 解き方の手順まず、In=∫dx(x2+1)nI_n = \int \frac{dx}{(x^2 + 1)^n}In=∫(x2+1)ndx と定義します。部分積分を使って、InI_nIn の漸化式を導出します。In=∫dx(x2+1)n=∫1(x2+1)ndx=∫x2+1(x2+1)n+1dx=∫x2(x2+1)n+1dx+∫1(x2+1)n+1dxI_n = \int \frac{dx}{(x^2 + 1)^n} = \int \frac{1}{(x^2 + 1)^n} dx = \int \frac{x^2 + 1}{(x^2 + 1)^{n+1}} dx = \int \frac{x^2}{(x^2+1)^{n+1}} dx + \int \frac{1}{(x^2+1)^{n+1}} dxIn=∫(x2+1)ndx=∫(x2+1)n1dx=∫(x2+1)n+1x2+1dx=∫(x2+1)n+1x2dx+∫(x2+1)n+11dx=∫x2(x2+1)n+1dx+In+1= \int \frac{x^2}{(x^2+1)^{n+1}} dx + I_{n+1}=∫(x2+1)n+1x2dx+In+1∫x2(x2+1)n+1dx=∫xx(x2+1)n+1dx\int \frac{x^2}{(x^2+1)^{n+1}} dx = \int x \frac{x}{(x^2+1)^{n+1}} dx∫(x2+1)n+1x2dx=∫x(x2+1)n+1xdxここで、u=xu = xu=x, dv=x(x2+1)n+1dxdv = \frac{x}{(x^2+1)^{n+1}} dxdv=(x2+1)n+1xdx とおくと、du=dxdu = dxdu=dx, v=∫x(x2+1)n+1dx=−12n(x2+1)nv = \int \frac{x}{(x^2+1)^{n+1}} dx = -\frac{1}{2n(x^2+1)^n}v=∫(x2+1)n+1xdx=−2n(x2+1)n1 となる。したがって、部分積分より∫x2(x2+1)n+1dx=−x2n(x2+1)n+∫12n(x2+1)ndx=−x2n(x2+1)n+12nIn\int \frac{x^2}{(x^2+1)^{n+1}} dx = -\frac{x}{2n(x^2+1)^n} + \int \frac{1}{2n(x^2+1)^n} dx = -\frac{x}{2n(x^2+1)^n} + \frac{1}{2n} I_n∫(x2+1)n+1x2dx=−2n(x2+1)nx+∫2n(x2+1)n1dx=−2n(x2+1)nx+2n1Inよって、In=−x2n(x2+1)n+12nIn+In+1I_n = -\frac{x}{2n(x^2+1)^n} + \frac{1}{2n} I_n + I_{n+1}In=−2n(x2+1)nx+2n1In+In+1 となる。In+1=In−12nIn+x2n(x2+1)n=2n−12nIn+x2n(x2+1)nI_{n+1} = I_n - \frac{1}{2n} I_n + \frac{x}{2n(x^2+1)^n} = \frac{2n-1}{2n} I_n + \frac{x}{2n(x^2+1)^n}In+1=In−2n1In+2n(x2+1)nx=2n2n−1In+2n(x2+1)nxIn+1=2n−12nIn+x2n(x2+1)nI_{n+1} = \frac{2n-1}{2n} I_n + \frac{x}{2n(x^2+1)^n}In+1=2n2n−1In+2n(x2+1)nxこの漸化式を用いて、I2I_2I2 を求めます。I1=∫dxx2+1=arctanx+CI_1 = \int \frac{dx}{x^2+1} = \arctan x + CI1=∫x2+1dx=arctanx+Cn=1n=1n=1 のとき、I2=2(1)−12(1)I1+x2(1)(x2+1)1=12I1+x2(x2+1)=12arctanx+x2(x2+1)+CI_2 = \frac{2(1)-1}{2(1)} I_1 + \frac{x}{2(1)(x^2+1)^1} = \frac{1}{2} I_1 + \frac{x}{2(x^2+1)} = \frac{1}{2} \arctan x + \frac{x}{2(x^2+1)} + CI2=2(1)2(1)−1I1+2(1)(x2+1)1x=21I1+2(x2+1)x=21arctanx+2(x2+1)x+C3. 最終的な答え∫dx(x2+1)2=12arctanx+x2(x2+1)+C\int \frac{dx}{(x^2 + 1)^2} = \frac{1}{2} \arctan x + \frac{x}{2(x^2+1)} + C∫(x2+1)2dx=21arctanx+2(x2+1)x+C