与えられた定積分を計算します。 $$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\csc x + \tan x) \cos x \, dx$$解析学定積分三角関数積分計算2025/7/81. 問題の内容与えられた定積分を計算します。∫π6π3(cscx+tanx)cosx dx\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\csc x + \tan x) \cos x \, dx∫6π3π(cscx+tanx)cosxdx2. 解き方の手順まず、被積分関数を展開します。(cscx+tanx)cosx=cscxcosx+tanxcosx(\csc x + \tan x) \cos x = \csc x \cos x + \tan x \cos x(cscx+tanx)cosx=cscxcosx+tanxcosxcscx=1sinx\csc x = \frac{1}{\sin x}cscx=sinx1、tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}tanx=cosxsinx なので、cscxcosx+tanxcosx=cosxsinx+sinxcosxcosx=cosxsinx+sinx=cotx+sinx \csc x \cos x + \tan x \cos x = \frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} \cos x = \frac{\cos x}{\sin x} + \sin x = \cot x + \sin xcscxcosx+tanxcosx=sinxcosx+cosxsinxcosx=sinxcosx+sinx=cotx+sinxしたがって、∫π6π3(cscx+tanx)cosx dx=∫π6π3(cotx+sinx) dx\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\csc x + \tan x) \cos x \, dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\cot x + \sin x) \, dx∫6π3π(cscx+tanx)cosxdx=∫6π3π(cotx+sinx)dxcotx=cosxsinx\cot x = \frac{\cos x}{\sin x}cotx=sinxcosxなので、∫cotx dx=∫cosxsinx dx=log∣sinx∣+C\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \log |\sin x| + C∫cotxdx=∫sinxcosxdx=log∣sinx∣+Cまた、∫sinx dx=−cosx+C\int \sin x \, dx = -\cos x + C∫sinxdx=−cosx+C です。したがって、∫(cotx+sinx) dx=log∣sinx∣−cosx+C\int (\cot x + \sin x) \, dx = \log |\sin x| - \cos x + C∫(cotx+sinx)dx=log∣sinx∣−cosx+C定積分を計算します。∫π6π3(cotx+sinx) dx=[log∣sinx∣−cosx]π6π3\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\cot x + \sin x) \, dx = \left[ \log |\sin x| - \cos x \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}∫6π3π(cotx+sinx)dx=[log∣sinx∣−cosx]6π3π=(log∣sinπ3∣−cosπ3)−(log∣sinπ6∣−cosπ6)= \left( \log \left| \sin \frac{\pi}{3} \right| - \cos \frac{\pi}{3} \right) - \left( \log \left| \sin \frac{\pi}{6} \right| - \cos \frac{\pi}{6} \right)=(logsin3π−cos3π)−(logsin6π−cos6π)sinπ3=32\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}sin3π=23, cosπ3=12\cos \frac{\pi}{3} = \frac{1}{2}cos3π=21, sinπ6=12\sin \frac{\pi}{6} = \frac{1}{2}sin6π=21, cosπ6=32\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}cos6π=23 なので、=(log32−12)−(log12−32)= \left( \log \frac{\sqrt{3}}{2} - \frac{1}{2} \right) - \left( \log \frac{1}{2} - \frac{\sqrt{3}}{2} \right)=(log23−21)−(log21−23)=log32−log12−12+32=log(32⋅2)−12+32=log3−12+32= \log \frac{\sqrt{3}}{2} - \log \frac{1}{2} - \frac{1}{2} + \frac{\sqrt{3}}{2} = \log \left( \frac{\sqrt{3}}{2} \cdot 2 \right) - \frac{1}{2} + \frac{\sqrt{3}}{2} = \log \sqrt{3} - \frac{1}{2} + \frac{\sqrt{3}}{2}=log23−log21−21+23=log(23⋅2)−21+23=log3−21+23=12log3−12+32=12(log3−1+3)= \frac{1}{2} \log 3 - \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1}{2} (\log 3 - 1 + \sqrt{3})=21log3−21+23=21(log3−1+3)3. 最終的な答え12(log3−1+3)\frac{1}{2} (\log 3 - 1 + \sqrt{3})21(log3−1+3)