与えられた対数の式を計算する問題です。 (1) $\frac{1}{2} \log_5 3 + 3\log_5 \sqrt{2} - \log_5 \sqrt{24}$ (2) $(\log_2 3 + \log_4 9)(\log_3 4 + \log_9 2)$代数学対数対数計算対数の性質2025/7/81. 問題の内容与えられた対数の式を計算する問題です。(1) 12log53+3log52−log524\frac{1}{2} \log_5 3 + 3\log_5 \sqrt{2} - \log_5 \sqrt{24}21log53+3log52−log524(2) (log23+log49)(log34+log92)(\log_2 3 + \log_4 9)(\log_3 4 + \log_9 2)(log23+log49)(log34+log92)2. 解き方の手順(1)まず、各項を整理します。12log53=log5312=log53\frac{1}{2} \log_5 3 = \log_5 3^{\frac{1}{2}} = \log_5 \sqrt{3}21log53=log5321=log533log52=log5(2)3=log5223\log_5 \sqrt{2} = \log_5 (\sqrt{2})^3 = \log_5 2\sqrt{2}3log52=log5(2)3=log522log524=log54⋅6=log526\log_5 \sqrt{24} = \log_5 \sqrt{4 \cdot 6} = \log_5 2\sqrt{6}log524=log54⋅6=log526与式はlog53+log522−log526=log53⋅2226=log566=log51=0\log_5 \sqrt{3} + \log_5 2\sqrt{2} - \log_5 2\sqrt{6} = \log_5 \frac{\sqrt{3} \cdot 2\sqrt{2}}{2\sqrt{6}} = \log_5 \frac{\sqrt{6}}{\sqrt{6}} = \log_5 1 = 0log53+log522−log526=log5263⋅22=log566=log51=0(2)log23+log49=log23+log2232=log23+22log23=log23+log23=2log23\log_2 3 + \log_4 9 = \log_2 3 + \log_{2^2} 3^2 = \log_2 3 + \frac{2}{2} \log_2 3 = \log_2 3 + \log_2 3 = 2\log_2 3log23+log49=log23+log2232=log23+22log23=log23+log23=2log23log34+log92=log322+log322=2log32+12log32=52log32\log_3 4 + \log_9 2 = \log_3 2^2 + \log_{3^2} 2 = 2\log_3 2 + \frac{1}{2} \log_3 2 = \frac{5}{2} \log_3 2log34+log92=log322+log322=2log32+21log32=25log32与式は(2log23)(52log32)=2⋅52log23⋅log32=5⋅log3log2⋅log2log3=5⋅1=5(2\log_2 3)(\frac{5}{2} \log_3 2) = 2 \cdot \frac{5}{2} \log_2 3 \cdot \log_3 2 = 5 \cdot \frac{\log 3}{\log 2} \cdot \frac{\log 2}{\log 3} = 5 \cdot 1 = 5(2log23)(25log32)=2⋅25log23⋅log32=5⋅log2log3⋅log3log2=5⋅1=53. 最終的な答え(1) 0(2) 5