次の式を計算します。 $\frac{2}{1+\sqrt{3}} + \frac{2}{\sqrt{3}+\sqrt{5}} + \frac{2}{\sqrt{5}+\sqrt{7}}$代数学式の計算分母の有理化根号2025/7/81. 問題の内容次の式を計算します。21+3+23+5+25+7\frac{2}{1+\sqrt{3}} + \frac{2}{\sqrt{3}+\sqrt{5}} + \frac{2}{\sqrt{5}+\sqrt{7}}1+32+3+52+5+722. 解き方の手順各項の分母を有理化します。分母の有理化には、a2−b2=(a+b)(a−b)a^2-b^2 = (a+b)(a-b)a2−b2=(a+b)(a−b)を利用します。第1項:21+3=2(1−3)(1+3)(1−3)=2(1−3)1−3=2(1−3)−2=−1+3\frac{2}{1+\sqrt{3}} = \frac{2(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})} = \frac{2(1-\sqrt{3})}{1-3} = \frac{2(1-\sqrt{3})}{-2} = -1+\sqrt{3}1+32=(1+3)(1−3)2(1−3)=1−32(1−3)=−22(1−3)=−1+3第2項:23+5=2(3−5)(3+5)(3−5)=2(3−5)3−5=2(3−5)−2=−3+5\frac{2}{\sqrt{3}+\sqrt{5}} = \frac{2(\sqrt{3}-\sqrt{5})}{(\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{5})} = \frac{2(\sqrt{3}-\sqrt{5})}{3-5} = \frac{2(\sqrt{3}-\sqrt{5})}{-2} = -\sqrt{3}+\sqrt{5}3+52=(3+5)(3−5)2(3−5)=3−52(3−5)=−22(3−5)=−3+5第3項:25+7=2(5−7)(5+7)(5−7)=2(5−7)5−7=2(5−7)−2=−5+7\frac{2}{\sqrt{5}+\sqrt{7}} = \frac{2(\sqrt{5}-\sqrt{7})}{(\sqrt{5}+\sqrt{7})(\sqrt{5}-\sqrt{7})} = \frac{2(\sqrt{5}-\sqrt{7})}{5-7} = \frac{2(\sqrt{5}-\sqrt{7})}{-2} = -\sqrt{5}+\sqrt{7}5+72=(5+7)(5−7)2(5−7)=5−72(5−7)=−22(5−7)=−5+7したがって、21+3+23+5+25+7=(−1+3)+(−3+5)+(−5+7)=−1+3−3+5−5+7=−1+7\frac{2}{1+\sqrt{3}} + \frac{2}{\sqrt{3}+\sqrt{5}} + \frac{2}{\sqrt{5}+\sqrt{7}} = (-1+\sqrt{3}) + (-\sqrt{3}+\sqrt{5}) + (-\sqrt{5}+\sqrt{7}) = -1 + \sqrt{3} - \sqrt{3} + \sqrt{5} - \sqrt{5} + \sqrt{7} = -1+\sqrt{7}1+32+3+52+5+72=(−1+3)+(−3+5)+(−5+7)=−1+3−3+5−5+7=−1+73. 最終的な答え−1+7-1 + \sqrt{7}−1+7