無限等比級数 $\sum_{n=1}^{\infty} 3\left(\frac{1}{2}\right)^{n-1}$ の和を求めます。

解析学無限級数等比級数収束
2025/7/8

1. 問題の内容

無限等比級数 n=13(12)n1\sum_{n=1}^{\infty} 3\left(\frac{1}{2}\right)^{n-1} の和を求めます。

2. 解き方の手順

無限等比級数の和の公式を利用します。
無限等比級数の一般項は arn1ar^{n-1} で表されます。
この問題では、初項 a=3a=3 で、公比 r=12r = \frac{1}{2} です。
無限等比級数が収束するための条件は r<1|r| < 1 です。
この問題では、12=12<1\left|\frac{1}{2}\right| = \frac{1}{2} < 1 なので、無限等比級数は収束します。
無限等比級数の和 SS は、
S=a1rS = \frac{a}{1-r}
で与えられます。
したがって、
S=3112=312=3×2=6S = \frac{3}{1 - \frac{1}{2}} = \frac{3}{\frac{1}{2}} = 3 \times 2 = 6

3. 最終的な答え

6

「解析学」の関連問題

定積分 $\int_{-1}^{1} (3x+2)(x-2) dx$ を計算します。

定積分積分多項式
2025/7/8

関数 $y = xe^{-x^2}$ を $x$ について微分する。

微分関数の微分積の微分合成関数の微分
2025/7/8

$f(x) = x^3 + 3ax^2 + 3bx + c$ について、以下の問題を解く。 (1) $a = -2$, $b = 3$, $c = -1$ のときの $f(x)$ の極大値と極小値を求...

三次関数極値微分接線増減
2025/7/8

はい、承知いたしました。画像にある関数を微分する問題ですね。一つずつ解いていきましょう。

微分合成関数積の微分商の微分三角関数指数関数対数関数
2025/7/8

以下の4つの関数の微分を求める問題です。 (2) $y = \frac{1}{\cos x}$ (4) $y = e^{-3x} \sin 2x$ (6) $y = \log |\tan x|$ (8...

微分合成関数の微分積の微分商の微分三角関数指数関数対数関数
2025/7/8

与えられた関数を微分する問題です。関数は以下の4つです。 (1) $y = \sin^4(3x)$ (2) $y = \tan^3(2x)$ (3) $y = e^{x^3}\sin(2x)$ (4)...

微分合成関数三角関数指数関数対数関数積の微分
2025/7/8

与えられた2つの不定積分を計算する問題です。 (1) $\int \frac{2}{\sqrt{x+2} + \sqrt{x}} dx$ (2) $\int \frac{1}{(x+1)\sqrt{x...

積分不定積分置換積分有理化
2025/7/8

以下の8つの関数をそれぞれ微分します。 (1) $y = \sin^3(4x)$ (2) $y = \frac{1}{\cos x}$ (3) $y = \sqrt{\tan x}$ (4) $y =...

微分合成関数の微分積の微分商の微分三角関数対数関数指数関数
2025/7/8

与えられた4つの不定積分を、部分分数分解を用いて計算する問題です。 (1) $\int \frac{1}{x^2 + x - 6} dx$ (2) $\int \frac{x-2}{x(x-1)} d...

不定積分部分分数分解積分
2025/7/8

以下の4つの関数を微分する問題です。 (1) $y = (x^4 + 3x^2 - 2)^5$ (2) $s = \frac{1}{(t^2 - 4)^3}$ (3) $y = \sqrt[4]{x^...

微分合成関数の微分関数の微分
2025/7/8