定積分 $\int_0^2 \sqrt{x^2+5}\,dx$ の値を求める問題です。解析学定積分置換積分双曲線関数積分2025/7/91. 問題の内容定積分 ∫02x2+5 dx\int_0^2 \sqrt{x^2+5}\,dx∫02x2+5dx の値を求める問題です。2. 解き方の手順x2+5\sqrt{x^2+5}x2+5の積分は、双曲線関数を用いた置換積分で計算できます。x=5sinhtx = \sqrt{5} \sinh tx=5sinht と置換します。このとき、dx=5cosht dtdx = \sqrt{5} \cosh t\, dtdx=5coshtdt となります。また、積分区間も変更する必要があります。x=0x = 0x=0 のとき、5sinht=0\sqrt{5} \sinh t = 05sinht=0 より t=0t = 0t=0x=2x = 2x=2 のとき、5sinht=2\sqrt{5} \sinh t = 25sinht=2 より sinht=25\sinh t = \frac{2}{\sqrt{5}}sinht=52。 t=sinh−1(25)t = \sinh^{-1}(\frac{2}{\sqrt{5}})t=sinh−1(52)。したがって、∫02x2+5 dx=∫0sinh−1(25)5sinh2t+5⋅5cosht dt\int_0^2 \sqrt{x^2+5}\,dx = \int_0^{\sinh^{-1}(\frac{2}{\sqrt{5}})} \sqrt{5\sinh^2 t + 5} \cdot \sqrt{5}\cosh t\, dt∫02x2+5dx=∫0sinh−1(52)5sinh2t+5⋅5coshtdt=∫0sinh−1(25)5(sinh2t+1)⋅5cosht dt= \int_0^{\sinh^{-1}(\frac{2}{\sqrt{5}})} \sqrt{5(\sinh^2 t + 1)} \cdot \sqrt{5}\cosh t\, dt=∫0sinh−1(52)5(sinh2t+1)⋅5coshtdt=∫0sinh−1(25)5cosh2t⋅5cosht dt= \int_0^{\sinh^{-1}(\frac{2}{\sqrt{5}})} \sqrt{5\cosh^2 t} \cdot \sqrt{5}\cosh t\, dt=∫0sinh−1(52)5cosh2t⋅5coshtdt=∫0sinh−1(25)5cosht⋅5cosht dt= \int_0^{\sinh^{-1}(\frac{2}{\sqrt{5}})} \sqrt{5}\cosh t \cdot \sqrt{5}\cosh t\, dt=∫0sinh−1(52)5cosht⋅5coshtdt=5∫0sinh−1(25)cosh2t dt= 5 \int_0^{\sinh^{-1}(\frac{2}{\sqrt{5}})} \cosh^2 t\, dt=5∫0sinh−1(52)cosh2tdtここで、cosh2t=1+cosh(2t)2\cosh^2 t = \frac{1 + \cosh(2t)}{2}cosh2t=21+cosh(2t) なので、5∫0sinh−1(25)1+cosh(2t)2 dt5 \int_0^{\sinh^{-1}(\frac{2}{\sqrt{5}})} \frac{1 + \cosh(2t)}{2}\, dt5∫0sinh−1(52)21+cosh(2t)dt=52∫0sinh−1(25)(1+cosh(2t)) dt= \frac{5}{2} \int_0^{\sinh^{-1}(\frac{2}{\sqrt{5}})} (1 + \cosh(2t))\, dt=25∫0sinh−1(52)(1+cosh(2t))dt=52[t+12sinh(2t)]0sinh−1(25)= \frac{5}{2} [t + \frac{1}{2}\sinh(2t)]_0^{\sinh^{-1}(\frac{2}{\sqrt{5}})}=25[t+21sinh(2t)]0sinh−1(52)=52[t+sinhtcosht]0sinh−1(25)= \frac{5}{2} [t + \sinh t \cosh t]_0^{\sinh^{-1}(\frac{2}{\sqrt{5}})}=25[t+sinhtcosht]0sinh−1(52)t=sinh−1(25)t = \sinh^{-1}(\frac{2}{\sqrt{5}})t=sinh−1(52) とすると、sinht=25\sinh t = \frac{2}{\sqrt{5}}sinht=52。 cosh2t−sinh2t=1\cosh^2 t - \sinh^2 t = 1cosh2t−sinh2t=1 より、 cosht=1+(25)2=1+45=95=35\cosh t = \sqrt{1 + (\frac{2}{\sqrt{5}})^2} = \sqrt{1 + \frac{4}{5}} = \sqrt{\frac{9}{5}} = \frac{3}{\sqrt{5}}cosht=1+(52)2=1+54=59=53。よって、52[sinh−1(25)+25⋅35−0]\frac{5}{2} [\sinh^{-1}(\frac{2}{\sqrt{5}}) + \frac{2}{\sqrt{5}} \cdot \frac{3}{\sqrt{5}} - 0]25[sinh−1(52)+52⋅53−0]=52[sinh−1(25)+65]= \frac{5}{2} [\sinh^{-1}(\frac{2}{\sqrt{5}}) + \frac{6}{5}]=25[sinh−1(52)+56]=52sinh−1(25)+3= \frac{5}{2} \sinh^{-1}(\frac{2}{\sqrt{5}}) + 3=25sinh−1(52)+3sinh−1x=ln(x+x2+1)\sinh^{-1} x = \ln(x + \sqrt{x^2+1})sinh−1x=ln(x+x2+1) より、sinh−1(25)=ln(25+45+1)=ln(25+35)=ln(55)=ln5=12ln5\sinh^{-1}(\frac{2}{\sqrt{5}}) = \ln(\frac{2}{\sqrt{5}} + \sqrt{\frac{4}{5}+1}) = \ln(\frac{2}{\sqrt{5}} + \frac{3}{\sqrt{5}}) = \ln(\frac{5}{\sqrt{5}}) = \ln \sqrt{5} = \frac{1}{2} \ln 5sinh−1(52)=ln(52+54+1)=ln(52+53)=ln(55)=ln5=21ln5。したがって、52⋅12ln5+3=54ln5+3\frac{5}{2} \cdot \frac{1}{2}\ln 5 + 3 = \frac{5}{4}\ln 5 + 325⋅21ln5+3=45ln5+33. 最終的な答え54ln5+3\frac{5}{4}\ln 5 + 345ln5+3