## 1. 問題の内容解析学定積分置換積分三角関数2025/7/9##1. 問題の内容与えられた定積分を計算します。問題は以下の4つです。(1) ∫011−x2 dx\int_0^1 \sqrt{1-x^2} \, dx∫011−x2dx(2) ∫−339−x2 dx\int_{-3}^3 \sqrt{9-x^2} \, dx∫−339−x2dx(3) ∫−134−x2 dx\int_{-1}^{\sqrt{3}} \sqrt{4-x^2} \, dx∫−134−x2dx(4) ∫1314−x2 dx\int_1^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} \, dx∫134−x21dx##2. 解き方の手順これらの積分は、三角関数による置換積分を用いて解きます。(1) ∫011−x2 dx\int_0^1 \sqrt{1-x^2} \, dx∫011−x2dxx=sinθx = \sin\thetax=sinθ と置換します。dx=cosθ dθdx = \cos\theta \, d\thetadx=cosθdθ。積分範囲:x=0⇒θ=0x=0 \Rightarrow \theta=0x=0⇒θ=0, x=1⇒θ=π/2x=1 \Rightarrow \theta=\pi/2x=1⇒θ=π/2よって、∫0π/21−sin2θcosθ dθ=∫0π/2cos2θ dθ=∫0π/21+cos(2θ)2 dθ=[θ2+sin(2θ)4]0π/2=π4\int_0^{\pi/2} \sqrt{1-\sin^2\theta} \cos\theta \, d\theta = \int_0^{\pi/2} \cos^2\theta \, d\theta = \int_0^{\pi/2} \frac{1+\cos(2\theta)}{2} \, d\theta = \left[ \frac{\theta}{2} + \frac{\sin(2\theta)}{4} \right]_0^{\pi/2} = \frac{\pi}{4}∫0π/21−sin2θcosθdθ=∫0π/2cos2θdθ=∫0π/221+cos(2θ)dθ=[2θ+4sin(2θ)]0π/2=4π(2) ∫−339−x2 dx\int_{-3}^3 \sqrt{9-x^2} \, dx∫−339−x2dxx=3sinθx = 3\sin\thetax=3sinθ と置換します。dx=3cosθ dθdx = 3\cos\theta \, d\thetadx=3cosθdθ。積分範囲:x=−3⇒θ=−π/2x=-3 \Rightarrow \theta=-\pi/2x=−3⇒θ=−π/2, x=3⇒θ=π/2x=3 \Rightarrow \theta=\pi/2x=3⇒θ=π/2よって、∫−π/2π/29−9sin2θ⋅3cosθ dθ=∫−π/2π/23cosθ⋅3cosθ dθ=9∫−π/2π/2cos2θ dθ=9∫−π/2π/21+cos(2θ)2 dθ=9[θ2+sin(2θ)4]−π/2π/2=9(π4−(−π4))=9π2\int_{-\pi/2}^{\pi/2} \sqrt{9-9\sin^2\theta} \cdot 3\cos\theta \, d\theta = \int_{-\pi/2}^{\pi/2} 3\cos\theta \cdot 3\cos\theta \, d\theta = 9\int_{-\pi/2}^{\pi/2} \cos^2\theta \, d\theta = 9\int_{-\pi/2}^{\pi/2} \frac{1+\cos(2\theta)}{2} \, d\theta = 9 \left[ \frac{\theta}{2} + \frac{\sin(2\theta)}{4} \right]_{-\pi/2}^{\pi/2} = 9 \left( \frac{\pi}{4} - \left( -\frac{\pi}{4} \right) \right) = \frac{9\pi}{2}∫−π/2π/29−9sin2θ⋅3cosθdθ=∫−π/2π/23cosθ⋅3cosθdθ=9∫−π/2π/2cos2θdθ=9∫−π/2π/221+cos(2θ)dθ=9[2θ+4sin(2θ)]−π/2π/2=9(4π−(−4π))=29π(3) ∫−134−x2 dx\int_{-1}^{\sqrt{3}} \sqrt{4-x^2} \, dx∫−134−x2dxx=2sinθx = 2\sin\thetax=2sinθ と置換します。dx=2cosθ dθdx = 2\cos\theta \, d\thetadx=2cosθdθ。積分範囲:x=−1⇒θ=arcsin(−1/2)=−π/6x=-1 \Rightarrow \theta = \arcsin(-1/2) = -\pi/6x=−1⇒θ=arcsin(−1/2)=−π/6, x=3⇒θ=arcsin(3/2)=π/3x=\sqrt{3} \Rightarrow \theta = \arcsin(\sqrt{3}/2) = \pi/3x=3⇒θ=arcsin(3/2)=π/3よって、∫−π/6π/34−4sin2θ⋅2cosθ dθ=∫−π/6π/32cosθ⋅2cosθ dθ=4∫−π/6π/3cos2θ dθ=4∫−π/6π/31+cos(2θ)2 dθ=2[θ+sin(2θ)2]−π/6π/3=2[(π3+sin(2π/3)2)−(−π6+sin(−π/3)2)]=2[π3+3/22+π6+3/22]=2[π2+32]=π+3\int_{-\pi/6}^{\pi/3} \sqrt{4-4\sin^2\theta} \cdot 2\cos\theta \, d\theta = \int_{-\pi/6}^{\pi/3} 2\cos\theta \cdot 2\cos\theta \, d\theta = 4\int_{-\pi/6}^{\pi/3} \cos^2\theta \, d\theta = 4\int_{-\pi/6}^{\pi/3} \frac{1+\cos(2\theta)}{2} \, d\theta = 2 \left[ \theta + \frac{\sin(2\theta)}{2} \right]_{-\pi/6}^{\pi/3} = 2 \left[ \left( \frac{\pi}{3} + \frac{\sin(2\pi/3)}{2} \right) - \left( -\frac{\pi}{6} + \frac{\sin(-\pi/3)}{2} \right) \right] = 2 \left[ \frac{\pi}{3} + \frac{\sqrt{3}/2}{2} + \frac{\pi}{6} + \frac{\sqrt{3}/2}{2} \right] = 2 \left[ \frac{\pi}{2} + \frac{\sqrt{3}}{2} \right] = \pi + \sqrt{3}∫−π/6π/34−4sin2θ⋅2cosθdθ=∫−π/6π/32cosθ⋅2cosθdθ=4∫−π/6π/3cos2θdθ=4∫−π/6π/321+cos(2θ)dθ=2[θ+2sin(2θ)]−π/6π/3=2[(3π+2sin(2π/3))−(−6π+2sin(−π/3))]=2[3π+23/2+6π+23/2]=2[2π+23]=π+3(4) ∫1314−x2 dx\int_1^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} \, dx∫134−x21dxx=2sinθx = 2\sin\thetax=2sinθ と置換します。dx=2cosθ dθdx = 2\cos\theta \, d\thetadx=2cosθdθ。積分範囲:x=1⇒θ=arcsin(1/2)=π/6x=1 \Rightarrow \theta = \arcsin(1/2) = \pi/6x=1⇒θ=arcsin(1/2)=π/6, x=3⇒θ=arcsin(3/2)=π/3x=\sqrt{3} \Rightarrow \theta = \arcsin(\sqrt{3}/2) = \pi/3x=3⇒θ=arcsin(3/2)=π/3よって、∫π/6π/314−4sin2θ⋅2cosθ dθ=∫π/6π/32cosθ2cosθ dθ=∫π/6π/31 dθ=[θ]π/6π/3=π3−π6=π6\int_{\pi/6}^{\pi/3} \frac{1}{\sqrt{4-4\sin^2\theta}} \cdot 2\cos\theta \, d\theta = \int_{\pi/6}^{\pi/3} \frac{2\cos\theta}{2\cos\theta} \, d\theta = \int_{\pi/6}^{\pi/3} 1 \, d\theta = \left[ \theta \right]_{\pi/6}^{\pi/3} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}∫π/6π/34−4sin2θ1⋅2cosθdθ=∫π/6π/32cosθ2cosθdθ=∫π/6π/31dθ=[θ]π/6π/3=3π−6π=6π##3. 最終的な答え(1) π4\frac{\pi}{4}4π(2) 9π2\frac{9\pi}{2}29π(3) π+3\pi + \sqrt{3}π+3(4) π6\frac{\pi}{6}6π