次の2つの定積分を求めます。 (1) $\int_{0}^{1} x(1-x)^5 dx$ (2) $\int_{2}^{5} \frac{x}{\sqrt{x-1}} dx$解析学定積分置換積分2025/7/91. 問題の内容次の2つの定積分を求めます。(1) ∫01x(1−x)5dx\int_{0}^{1} x(1-x)^5 dx∫01x(1−x)5dx(2) ∫25xx−1dx\int_{2}^{5} \frac{x}{\sqrt{x-1}} dx∫25x−1xdx2. 解き方の手順(1) ∫01x(1−x)5dx\int_{0}^{1} x(1-x)^5 dx∫01x(1−x)5dxt=1−xt = 1-xt=1−x と置換すると、x=1−tx = 1-tx=1−t、dx=−dtdx = -dtdx=−dt。積分範囲は x:0→1x: 0 \to 1x:0→1 から t:1→0t: 1 \to 0t:1→0 に変わります。∫01x(1−x)5dx=∫10(1−t)t5(−dt)=∫01(1−t)t5dt=∫01(t5−t6)dt\int_{0}^{1} x(1-x)^5 dx = \int_{1}^{0} (1-t)t^5 (-dt) = \int_{0}^{1} (1-t)t^5 dt = \int_{0}^{1} (t^5 - t^6) dt∫01x(1−x)5dx=∫10(1−t)t5(−dt)=∫01(1−t)t5dt=∫01(t5−t6)dt=[t66−t77]01=16−17=7−642=142= \left[ \frac{t^6}{6} - \frac{t^7}{7} \right]_{0}^{1} = \frac{1}{6} - \frac{1}{7} = \frac{7-6}{42} = \frac{1}{42}=[6t6−7t7]01=61−71=427−6=421(2) ∫25xx−1dx\int_{2}^{5} \frac{x}{\sqrt{x-1}} dx∫25x−1xdxt=x−1t = x-1t=x−1 と置換すると、x=t+1x = t+1x=t+1、dx=dtdx = dtdx=dt。積分範囲は x:2→5x: 2 \to 5x:2→5 から t:1→4t: 1 \to 4t:1→4 に変わります。∫25xx−1dx=∫14t+1tdt=∫14(tt+1t)dt=∫14(t1/2+t−1/2)dt\int_{2}^{5} \frac{x}{\sqrt{x-1}} dx = \int_{1}^{4} \frac{t+1}{\sqrt{t}} dt = \int_{1}^{4} \left( \frac{t}{\sqrt{t}} + \frac{1}{\sqrt{t}} \right) dt = \int_{1}^{4} (t^{1/2} + t^{-1/2}) dt∫25x−1xdx=∫14tt+1dt=∫14(tt+t1)dt=∫14(t1/2+t−1/2)dt=[t3/23/2+t1/21/2]14=[23t3/2+2t1/2]14=(23(4)3/2+2(4)1/2)−(23(1)3/2+2(1)1/2)= \left[ \frac{t^{3/2}}{3/2} + \frac{t^{1/2}}{1/2} \right]_{1}^{4} = \left[ \frac{2}{3} t^{3/2} + 2t^{1/2} \right]_{1}^{4} = \left( \frac{2}{3} (4)^{3/2} + 2(4)^{1/2} \right) - \left( \frac{2}{3} (1)^{3/2} + 2(1)^{1/2} \right)=[3/2t3/2+1/2t1/2]14=[32t3/2+2t1/2]14=(32(4)3/2+2(4)1/2)−(32(1)3/2+2(1)1/2)=(23(8)+2(2))−(23+2)=163+4−23−2=143+2=143+63=203= \left( \frac{2}{3} (8) + 2(2) \right) - \left( \frac{2}{3} + 2 \right) = \frac{16}{3} + 4 - \frac{2}{3} - 2 = \frac{14}{3} + 2 = \frac{14}{3} + \frac{6}{3} = \frac{20}{3}=(32(8)+2(2))−(32+2)=316+4−32−2=314+2=314+36=3203. 最終的な答え(1) 142\frac{1}{42}421(2) 203\frac{20}{3}320