画像に書かれている二次方程式の問題を解きます。問題は全部で10問あります。代数学二次方程式平方根解の公式因数分解2025/7/91. 問題の内容画像に書かれている二次方程式の問題を解きます。問題は全部で10問あります。2. 解き方の手順(1) (x−1)2−0.09=0(x-1)^2 - 0.09 = 0(x−1)2−0.09=0(x−1)2=0.09(x-1)^2 = 0.09(x−1)2=0.09x−1=±0.09x-1 = \pm\sqrt{0.09}x−1=±0.09x−1=±0.3x-1 = \pm 0.3x−1=±0.3x=1±0.3x = 1 \pm 0.3x=1±0.3x=1.3,0.7x = 1.3, 0.7x=1.3,0.7(2) x2−10x=0x^2 - 10x = 0x2−10x=0x(x−10)=0x(x-10) = 0x(x−10)=0x=0,10x = 0, 10x=0,10(3) 5x2−6x+1=05x^2 - 6x + 1 = 05x2−6x+1=0解の公式より、x=−(−6)±(−6)2−4(5)(1)2(5)x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(5)(1)}}{2(5)}x=2(5)−(−6)±(−6)2−4(5)(1)x=6±36−2010x = \frac{6 \pm \sqrt{36 - 20}}{10}x=106±36−20x=6±1610x = \frac{6 \pm \sqrt{16}}{10}x=106±16x=6±410x = \frac{6 \pm 4}{10}x=106±4x=1010,210x = \frac{10}{10}, \frac{2}{10}x=1010,102x=1,15x = 1, \frac{1}{5}x=1,51(4) 2x2−6x−5=02x^2 - 6x - 5 = 02x2−6x−5=0解の公式より、x=−(−6)±(−6)2−4(2)(−5)2(2)x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(2)(-5)}}{2(2)}x=2(2)−(−6)±(−6)2−4(2)(−5)x=6±36+404x = \frac{6 \pm \sqrt{36 + 40}}{4}x=46±36+40x=6±764x = \frac{6 \pm \sqrt{76}}{4}x=46±76x=6±2194x = \frac{6 \pm 2\sqrt{19}}{4}x=46±219x=3±192x = \frac{3 \pm \sqrt{19}}{2}x=23±19(5) x(x−3)=−1x(x-3) = -1x(x−3)=−1x2−3x=−1x^2 - 3x = -1x2−3x=−1x2−3x+1=0x^2 - 3x + 1 = 0x2−3x+1=0解の公式より、x=−(−3)±(−3)2−4(1)(1)2(1)x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(1)}}{2(1)}x=2(1)−(−3)±(−3)2−4(1)(1)x=3±9−42x = \frac{3 \pm \sqrt{9 - 4}}{2}x=23±9−4x=3±52x = \frac{3 \pm \sqrt{5}}{2}x=23±5(6) 12x2−23x+16=0\frac{1}{2}x^2 - \frac{2}{3}x + \frac{1}{6} = 021x2−32x+61=0両辺に6を掛けて、3x2−4x+1=03x^2 - 4x + 1 = 03x2−4x+1=0(3x−1)(x−1)=0(3x-1)(x-1) = 0(3x−1)(x−1)=0x=13,1x = \frac{1}{3}, 1x=31,1(7) 9x2−6x+1=09x^2 - 6x + 1 = 09x2−6x+1=0(3x−1)2=0(3x-1)^2 = 0(3x−1)2=03x−1=03x - 1 = 03x−1=0x=13x = \frac{1}{3}x=31(8) x(x+1)2−2x−33=2\frac{x(x+1)}{2} - \frac{2x-3}{3} = 22x(x+1)−32x−3=2両辺に6を掛けて、3x(x+1)−2(2x−3)=123x(x+1) - 2(2x-3) = 123x(x+1)−2(2x−3)=123x2+3x−4x+6=123x^2 + 3x - 4x + 6 = 123x2+3x−4x+6=123x2−x−6=03x^2 - x - 6 = 03x2−x−6=0解の公式より、x=−(−1)±(−1)2−4(3)(−6)2(3)x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-6)}}{2(3)}x=2(3)−(−1)±(−1)2−4(3)(−6)x=1±1+726x = \frac{1 \pm \sqrt{1 + 72}}{6}x=61±1+72x=1±736x = \frac{1 \pm \sqrt{73}}{6}x=61±73(9) −9x2−6x+8=0-9x^2 - 6x + 8 = 0−9x2−6x+8=09x2+6x−8=09x^2 + 6x - 8 = 09x2+6x−8=0解の公式より、x=−6±62−4(9)(−8)2(9)x = \frac{-6 \pm \sqrt{6^2 - 4(9)(-8)}}{2(9)}x=2(9)−6±62−4(9)(−8)x=−6±36+28818x = \frac{-6 \pm \sqrt{36 + 288}}{18}x=18−6±36+288x=−6±32418x = \frac{-6 \pm \sqrt{324}}{18}x=18−6±324x=−6±1818x = \frac{-6 \pm 18}{18}x=18−6±18x=1218,−2418x = \frac{12}{18}, \frac{-24}{18}x=1812,18−24x=23,−43x = \frac{2}{3}, -\frac{4}{3}x=32,−34(10) (x−5)2−3(x−5)−10=0(x-5)^2 - 3(x-5) - 10 = 0(x−5)2−3(x−5)−10=0A=x−5A = x-5A=x−5とすると、A2−3A−10=0A^2 - 3A - 10 = 0A2−3A−10=0(A−5)(A+2)=0(A-5)(A+2) = 0(A−5)(A+2)=0A=5,−2A = 5, -2A=5,−2x−5=5,−2x-5 = 5, -2x−5=5,−2x=10,3x = 10, 3x=10,33. 最終的な答え(1) x=1.3,0.7x = 1.3, 0.7x=1.3,0.7(2) x=0,10x = 0, 10x=0,10(3) x=1,15x = 1, \frac{1}{5}x=1,51(4) x=3±192x = \frac{3 \pm \sqrt{19}}{2}x=23±19(5) x=3±52x = \frac{3 \pm \sqrt{5}}{2}x=23±5(6) x=13,1x = \frac{1}{3}, 1x=31,1(7) x=13x = \frac{1}{3}x=31(8) x=1±736x = \frac{1 \pm \sqrt{73}}{6}x=61±73(9) x=23,−43x = \frac{2}{3}, -\frac{4}{3}x=32,−34(10) x=10,3x = 10, 3x=10,3