複素数 $(-1 + i)^{-11}$ を計算する問題です。代数学複素数複素数の計算極形式ド・モアブルの定理2025/7/91. 問題の内容複素数 (−1+i)−11(-1 + i)^{-11}(−1+i)−11 を計算する問題です。2. 解き方の手順まず、複素数 −1+i-1 + i−1+i を極形式で表します。−1+i=r(cosθ+isinθ)-1 + i = r(\cos \theta + i \sin \theta)−1+i=r(cosθ+isinθ) とすると、r=(−1)2+12=2r = \sqrt{(-1)^2 + 1^2} = \sqrt{2}r=(−1)2+12=2cosθ=−12,sinθ=12\cos \theta = \frac{-1}{\sqrt{2}}, \sin \theta = \frac{1}{\sqrt{2}}cosθ=2−1,sinθ=21 より、θ=3π4\theta = \frac{3\pi}{4}θ=43π です。したがって、−1+i=2(cos3π4+isin3π4)=2ei3π4-1 + i = \sqrt{2}(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}) = \sqrt{2} e^{i \frac{3\pi}{4}}−1+i=2(cos43π+isin43π)=2ei43πこれより、(−1+i)−11=(2ei3π4)−11=(2)−11e−i33π4(-1 + i)^{-11} = (\sqrt{2} e^{i \frac{3\pi}{4}})^{-11} = (\sqrt{2})^{-11} e^{-i \frac{33\pi}{4}}(−1+i)−11=(2ei43π)−11=(2)−11e−i433π(2)−11=(212)−11=2−112=12112=1252=1322=264(\sqrt{2})^{-11} = (2^{\frac{1}{2}})^{-11} = 2^{-\frac{11}{2}} = \frac{1}{2^{\frac{11}{2}}} = \frac{1}{2^5 \sqrt{2}} = \frac{1}{32 \sqrt{2}} = \frac{\sqrt{2}}{64}(2)−11=(221)−11=2−211=22111=2521=3221=642また、e−i33π4=cos(−33π4)+isin(−33π4)e^{-i \frac{33\pi}{4}} = \cos (-\frac{33\pi}{4}) + i \sin (-\frac{33\pi}{4})e−i433π=cos(−433π)+isin(−433π)−33π4=−32π4−π4=−8π−π4-\frac{33\pi}{4} = -\frac{32\pi}{4} - \frac{\pi}{4} = -8\pi - \frac{\pi}{4}−433π=−432π−4π=−8π−4π なので、−33π4-\frac{33\pi}{4}−433π は −π4-\frac{\pi}{4}−4π と同じ位置になります。よって、cos(−33π4)=cos(−π4)=cos(π4)=22\cos (-\frac{33\pi}{4}) = \cos (-\frac{\pi}{4}) = \cos (\frac{\pi}{4}) = \frac{\sqrt{2}}{2}cos(−433π)=cos(−4π)=cos(4π)=22sin(−33π4)=sin(−π4)=−sin(π4)=−22\sin (-\frac{33\pi}{4}) = \sin (-\frac{\pi}{4}) = -\sin (\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}sin(−433π)=sin(−4π)=−sin(4π)=−22e−i33π4=22−i22e^{-i \frac{33\pi}{4}} = \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}e−i433π=22−i22したがって、(−1+i)−11=264(22−i22)=264⋅22(1−i)=2128(1−i)=164(1−i)=164−164i(-1 + i)^{-11} = \frac{\sqrt{2}}{64} (\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}) = \frac{\sqrt{2}}{64} \cdot \frac{\sqrt{2}}{2} (1 - i) = \frac{2}{128} (1 - i) = \frac{1}{64}(1 - i) = \frac{1}{64} - \frac{1}{64} i(−1+i)−11=642(22−i22)=642⋅22(1−i)=1282(1−i)=641(1−i)=641−641i3. 最終的な答え164−164i\frac{1}{64} - \frac{1}{64} i641−641i