ベクトル $\vec{a} = (-3, 5)$ と $\vec{b} = (-2, 3)$ が与えられたとき、内積 $\vec{a} \cdot \vec{b}$ を求める問題です。

代数学ベクトル内積線形代数
2025/7/10

1. 問題の内容

ベクトル a=(3,5)\vec{a} = (-3, 5)b=(2,3)\vec{b} = (-2, 3) が与えられたとき、内積 ab\vec{a} \cdot \vec{b} を求める問題です。

2. 解き方の手順

内積の定義に従って計算します。ベクトルの内積は、対応する成分同士の積の和で計算されます。
a=(a1,a2)\vec{a} = (a_1, a_2)b=(b1,b2)\vec{b} = (b_1, b_2) のとき、ab=a1b1+a2b2\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 で計算できます。
この問題の場合、a=(3,5)\vec{a} = (-3, 5)b=(2,3)\vec{b} = (-2, 3) なので、
ab=(3)×(2)+5×3\vec{a} \cdot \vec{b} = (-3) \times (-2) + 5 \times 3
=6+15= 6 + 15
=21= 21

3. 最終的な答え

ab=21\vec{a} \cdot \vec{b} = 21

「代数学」の関連問題

与えられた二次関数を $y=a(x-p)^2+q$ の形に変形し、空欄を埋める問題です。問題は全部で4つあります。 (1) $y = x^2 - 2x$ (2) $y = x^2 + 4x + 1$ ...

二次関数平方完成数式変形
2025/7/10

与えられた2つの2次関数の頂点を求める問題です。 (1) $y = (x+1)^2 - 2$ (2) $y = -(x+1)^2 + 2$

二次関数頂点平方完成
2025/7/10

2次関数のグラフの頂点の座標を求め、指定された枠に適切な数字を記入する問題です。また、グラフを手書きで記入する必要がありますが、ここでは座標を求めることに焦点を当てます。問題は2つあります。 (1) ...

二次関数グラフ頂点標準形
2025/7/10

等差数列 $\{a_n\}$ について、初項から第 $n$ 項までの和を $S_n$ とおく。$a_1 - a_{10} = -18$ かつ $S_3 = 15$ を満たすとき、以下の問いに答える。 ...

等差数列数列級数シグマ整数の性質
2025/7/10

与えられた2つの2次関数について、グラフの頂点の座標を求める問題です。 (1) $y = x^2 + 1$ (2) $y = -2x^2 + 2$

二次関数グラフ頂点座標
2025/7/10

与えられた行列 $A$ が対角化可能かどうかを調べ、対角化可能であれば対角化せよ。ここでは、(1) の行列について解く。 行列 $A$ は次の通りである。 $A = \begin{bmatrix} 7...

行列対角化固有値固有ベクトル
2025/7/10

与えられた二次方程式 $x^2 + 16x + 64 = 0$ を解き、$x$ の値を求める問題です。

二次方程式因数分解解の公式方程式
2025/7/10

問題6:一定の速さで走る列車が、長さ320mのトンネルを通過するのに10秒かかり、長さ220mの鉄橋を通過するのに20秒かかる。この列車の長さを求める問題です。 問題7:何人かの子供にノートを配る。1...

文章問題連立方程式不等式
2025/7/10

問題6:一定の速さで走る列車が、長さ320mのトンネルを通過するのに10秒、長さ220mの鉄橋を通過するのに20秒かかる。列車の長さを求める。 問題7:何人かの子供にノートを配る。1人7冊だと6冊余り...

文章題連立方程式不等式
2025/7/10

## 1. 問題の内容

不等式証明代数不等式相加相乗平均
2025/7/10