与えられた数列の和 $S$ を求めます。 $S = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + \cdots + (2n-1) \cdot 3^{n-1}$代数学数列級数等比数列シグマ2025/7/101. 問題の内容与えられた数列の和 SSS を求めます。S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1S = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + \cdots + (2n-1) \cdot 3^{n-1}S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−12. 解き方の手順数列の和 SSS を求めるために、等比数列の和の公式を利用します。SSSに3を掛けて、3S3S3Sを計算し、SSSから3S3S3Sを引きます。S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1S = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + \cdots + (2n-1) \cdot 3^{n-1}S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−13S=1⋅3+3⋅32+5⋅33+⋯+(2n−1)⋅3n3S = 1 \cdot 3 + 3 \cdot 3^2 + 5 \cdot 3^3 + \cdots + (2n-1) \cdot 3^n3S=1⋅3+3⋅32+5⋅33+⋯+(2n−1)⋅3nS−3S=1+2⋅3+2⋅32+⋯+2⋅3n−1−(2n−1)⋅3nS - 3S = 1 + 2 \cdot 3 + 2 \cdot 3^2 + \cdots + 2 \cdot 3^{n-1} - (2n-1) \cdot 3^nS−3S=1+2⋅3+2⋅32+⋯+2⋅3n−1−(2n−1)⋅3n−2S=1+2(3+32+⋯+3n−1)−(2n−1)⋅3n-2S = 1 + 2 (3 + 3^2 + \cdots + 3^{n-1}) - (2n-1) \cdot 3^n−2S=1+2(3+32+⋯+3n−1)−(2n−1)⋅3n3+32+⋯+3n−13 + 3^2 + \cdots + 3^{n-1}3+32+⋯+3n−1 は、初項3、公比3、項数 n−1n-1n−1 の等比数列なので、その和は3(3n−1−1)3−1=3(3n−1−1)2=3n−32\frac{3(3^{n-1} - 1)}{3-1} = \frac{3(3^{n-1} - 1)}{2} = \frac{3^n - 3}{2}3−13(3n−1−1)=23(3n−1−1)=23n−3したがって、−2S=1+2⋅3n−32−(2n−1)⋅3n-2S = 1 + 2 \cdot \frac{3^n - 3}{2} - (2n-1) \cdot 3^n−2S=1+2⋅23n−3−(2n−1)⋅3n−2S=1+3n−3−(2n−1)⋅3n-2S = 1 + 3^n - 3 - (2n-1) \cdot 3^n−2S=1+3n−3−(2n−1)⋅3n−2S=3n−2−(2n−1)⋅3n-2S = 3^n - 2 - (2n-1) \cdot 3^n−2S=3n−2−(2n−1)⋅3n−2S=3n−2−2n⋅3n+3n-2S = 3^n - 2 - 2n \cdot 3^n + 3^n−2S=3n−2−2n⋅3n+3n−2S=2⋅3n−2−2n⋅3n-2S = 2 \cdot 3^n - 2 - 2n \cdot 3^n−2S=2⋅3n−2−2n⋅3n−2S=(2−2n)⋅3n−2-2S = (2-2n) \cdot 3^n - 2−2S=(2−2n)⋅3n−2S=(n−1)⋅3n+1S = (n-1) \cdot 3^n + 1S=(n−1)⋅3n+13. 最終的な答えS=(n−1)3n+1S = (n-1)3^n + 1S=(n−1)3n+1