三角形ABCにおいて、角ABCと角ACBの二等分線の交点をPとするとき、角BPCの大きさを求める問題です。ただし、角BAC = $72^\circ$ です。

幾何学三角形角の二等分線内角の和角度
2025/7/11

1. 問題の内容

三角形ABCにおいて、角ABCと角ACBの二等分線の交点をPとするとき、角BPCの大きさを求める問題です。ただし、角BAC = 7272^\circ です。

2. 解き方の手順

三角形の内角の和は 180180^\circ であることを利用します。
まず、三角形ABCにおいて、
ABC+ACB=180BAC=18072=108\angle ABC + \angle ACB = 180^\circ - \angle BAC = 180^\circ - 72^\circ = 108^\circ
次に、角ABCと角ACBの二等分線をそれぞれBP, CPとするので、
PBC=12ABC\angle PBC = \frac{1}{2} \angle ABC
PCB=12ACB\angle PCB = \frac{1}{2} \angle ACB
したがって、
PBC+PCB=12(ABC+ACB)=12(108)=54\angle PBC + \angle PCB = \frac{1}{2} (\angle ABC + \angle ACB) = \frac{1}{2} (108^\circ) = 54^\circ
最後に、三角形PBCにおいて、
BPC=180(PBC+PCB)=18054=126\angle BPC = 180^\circ - (\angle PBC + \angle PCB) = 180^\circ - 54^\circ = 126^\circ

3. 最終的な答え

BPC=126\angle BPC = 126^\circ

「幾何学」の関連問題

2つの直線の交点の座標を求める問題です。まず、それぞれの直線の方程式を求め、その後、連立方程式を解いて交点の座標を求めます。

直線交点一次関数連立方程式
2025/7/11

点Pは三角形ABCの頂点Aを出発し、秒速2cmで辺AB上を移動する。点PがAを出発してからx秒後の三角形APCの面積をy $cm^2$とするとき、yをxの式で表す問題です。三角形ABCにおいて、AB=...

三角形面積一次関数図形
2025/7/11

問題3は、与えられた直線に対して、点Aと対称な点Bの座標を求める問題です。 問題4は、与えられた中心と半径を持つ円の方程式を求める問題です。

座標平面直線対称点円の方程式
2025/7/11

点Aの座標が(0, 6)、点Bの座標が(11, 4)であるとき、x軸上の点Cを$\angle ACB$が直角となるように定める。このとき、点Cのx座標を求めよ。ただし、線分BCは線分ACより長いものと...

座標平面直角三角形傾き二次方程式
2025/7/11

2つの相似な立体である人形Aと人形Bがあります。人形Aの高さは15cm、体積は810cm³です。人形Bの高さは20cmです。人形Bの体積を求めなさい。

相似立体図形体積比
2025/7/11

$\sin 30^\circ + \cos 60^\circ + \tan 45^\circ$ の値を計算する問題です。

三角関数三角比角度
2025/7/11

3点(4,-1), (6,3), (-3,0)を通る円の方程式を求めよ。

円の方程式座標平面
2025/7/11

3点 (4, -1), (6, 3), (-3, 0) を通る円の方程式を求めよ。

円の方程式座標平面標準形
2025/7/11

3点 $O(0, 0, 0)$, $A(1, 2, 1)$, $B(1, 4, -3)$が与えられています。z軸上の点Pで、点Aと点Bからの距離が等しい点の座標を求める問題です。

空間ベクトル距離座標
2025/7/11

球面 $(x+1)^2 + (y-4)^2 + (z-2)^2 = 3^2$ と $xy$ 平面が交わる部分(円)の中心の座標と半径を求める問題です。

球面座標空間図形
2025/7/11