問題は、xy平面上の2点(3, 0)と(-3, 0)を焦点とし、これらの2焦点からの距離の差が2であるような点の軌跡である双曲線の方程式を $\frac{x^2}{A} - \frac{y^2}{B} = 1$ の形で表したときのBの値を求める問題です。

幾何学双曲線軌跡焦点方程式
2025/7/12

1. 問題の内容

問題は、xy平面上の2点(3, 0)と(-3, 0)を焦点とし、これらの2焦点からの距離の差が2であるような点の軌跡である双曲線の方程式を
x2Ay2B=1\frac{x^2}{A} - \frac{y^2}{B} = 1
の形で表したときのBの値を求める問題です。

2. 解き方の手順

双曲線の方程式の一般形は、2つの焦点からの距離の差が一定である点の軌跡として定義されます。この問題では、焦点は(3, 0)と(-3, 0)であり、距離の差は2です。
双曲線の方程式は、
x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
と表されます。ここで、aは双曲線の中心から頂点までの距離、bは共役軸の長さに関係する値です。焦点間の距離は2cで表され、この問題では2c = 6なので、c = 3です。また、距離の差は2aで表され、この問題では2a = 2なので、a = 1です。
双曲線では、c2=a2+b2c^2 = a^2 + b^2の関係が成り立ちます。したがって、
b2=c2a2=3212=91=8b^2 = c^2 - a^2 = 3^2 - 1^2 = 9 - 1 = 8
となります。
したがって、B = b2b^2 = 8です。

3. 最終的な答え

8

「幾何学」の関連問題

$xy$平面上の2点$(3, 0), (-3, 0)$を焦点とし、これら2焦点からの距離の差が2であるような点の軌跡である双曲線の方程式を$\frac{x^2}{A} - \frac{y^2}{B} ...

双曲線軌跡焦点標準形
2025/7/12

$xy$ 平面上の双曲線 $\frac{x^2}{5^2} - \frac{y^2}{12^2} = 1$ の頂点の $x$ 座標のうち、大きい方の値を求める問題です。

双曲線座標頂点
2025/7/12

$xy$ 平面上の双曲線 $\frac{x^2}{5^2} - \frac{y^2}{12^2} = 1$ の焦点のうち、$x$ 座標が大きい方の $x$ 座標の値を求める。

双曲線焦点座標平面
2025/7/12

円Oの周上に点A, B, C, Dがあり、三角形ABCは正三角形である。線分BD上に点Eがあり、BE = CDである。 (1) AE = ADであることを証明する。 (2) 点Aから線分BDに下ろした...

正三角形円周角の定理合同直角三角形面積垂線
2025/7/12

座標空間内の4点 $O(0,0,0)$, $A(1,1,1)$, $B(-1,2,3)$, $C(a,-1,4)$ が与えられている。 (1) $a$ が全実数を動くとき、三角形 $ABC$ の面積の...

ベクトル空間図形面積体積外積四面体
2025/7/12

全体が長方形と正方形からなる図形があり、その全体の面積は48 $cm^2$である。長方形の面積は48 $cm^2$と示されている。正方形の一辺の長さを求める。

面積正方形長方形図形
2025/7/12

半径3の球に内接する直円錐があり、直円錐の高さは3以上とする。球の中心Oと直円錐の底面の中心Mとの距離を$x$とするとき、次の問いに答えよ。 (1) 直円錐の体積$V$を$x$の式で表せ。 (2) $...

体積円錐微分最大値
2025/7/12

三角形ABCにおいて、AB=8, AC=5, ∠BAC=60°である。三角形ABCの外接円をK、Kの中心をOとする。直線AOと辺BCの交点をDとし、直線AOとKの交点のうち、AでないものをEとする。以...

三角形外接円正弦定理余弦定理角の二等分線の定理方べきの定理
2025/7/12

正方形ABCDがあり、原点を通る直線 $y=mx$ が辺BC, ADとそれぞれ点P, Qで交わっている。四角形ABPQの面積を$a$, 四角形PCDQの面積を$b$とする。 (1) $a=b$のとき、...

図形正方形面積座標直線
2025/7/12

ベクトル $\vec{a} = (3, 1)$、$\vec{b} = (1, 2)$ が与えられている。 (1) $|\vec{a} + t\vec{b}|$ の最小値とそのときの $t$ の値を求め...

ベクトル内積ベクトルの大きさ最小値角度
2025/7/12