7人で輪を作るとき、並び順が円順列であるときの総数を求める問題です。

離散数学円順列組み合わせ順列階乗
2025/7/13

1. 問題の内容

7人で輪を作るとき、並び順が円順列であるときの総数を求める問題です。

2. 解き方の手順

円順列の総数は、(n-1)! で計算できます。
今回の問題では、n=7なので、
(7-1)! を計算します。
(7-1)! = 6! = 6 * 5 * 4 * 3 * 2 * 1

3. 最終的な答え

6! = 720
したがって、7人で輪を作るときの並び方の総数は720通りです。

「離散数学」の関連問題

7個の文字a, b, c, d, e, f, gを円形に並べるとき、aとbが隣り合う並べ方は何通りあるかを求める問題です。

順列円順列組み合わせ
2025/7/17

5個の文字a, b, c, d, eを1列に並べるとき、以下の並べ方は何通りあるかを求める問題です。 (1) aとbが両端にくる場合 (2) aとbが隣り合う場合

順列組み合わせ場合の数数え上げ
2025/7/17

5人の生徒を2つの部屋P, Qに入れる方法について、以下の2つの場合について場合の数を求めます。 (1) 1人も入らない部屋があってもよい。 (2) どの部屋にも少なくとも1人は入る。

組み合わせ場合の数集合
2025/7/17

東西に4本、南北に6本の格子状の道がある。最短距離でAからBへ行く道順は何通りあるかを求める問題です。

組み合わせ最短経路格子状の道順列
2025/7/17

あるグループにおけるスポーツの好みについて、次のA~Dのことが分かっている。 A: 野球が好きな人は、ゴルフが好きである。 B: ゴルフが好きな人は、バスケットボールが好きである。 C: サッカーが好...

論理推論命題論理対偶
2025/7/17

8人の生徒を以下の3つの場合に分けて、それぞれの分け方の総数を求める問題です。 (1) 4人、3人、1人の3組に分ける (2) 2人、2人、2人、2人の4組に分ける (3) 4人、2人、2人の3組に分...

組み合わせ場合の数順列
2025/7/17

AからEの5人が5日間でテニスの総当たり戦を行う。毎日2試合ずつ行われ、同じ人が1日に2度試合をすることはない。与えられた情報から、確実に言えることはどれか選択肢から選びます。

組み合わせ総当たり戦論理
2025/7/17

6人の生徒を、3つの教室A, B, Cに少なくとも1人以上が入るように分ける場合の数を求める問題です。

組み合わせ場合の数包除原理
2025/7/17

6人の生徒を3つの教室A, B, Cに分ける方法は何通りあるか。ただし、どの教室も少なくとも1人はいるものとする。

組み合わせ場合の数包除原理
2025/7/17

12人を指定された人数構成のグループに分ける場合の数を求める問題です。具体的には、以下の5つの場合に分けて考えます。 (1) 5人、4人、3人のグループに分ける (2) 4人ずつA組、B組、C組の3組...

組み合わせ場合の数順列
2025/7/17