$\sum_{k=0}^{n} \frac{{}_n C_k}{n+1+k {}_n C_k}$ を求めよ。代数学二項係数級数組み合わせ2025/7/141. 問題の内容∑k=0nnCkn+1+knCk\sum_{k=0}^{n} \frac{{}_n C_k}{n+1+k {}_n C_k}∑k=0nn+1+knCknCk を求めよ。2. 解き方の手順まず、二項係数の定義nCk=n!k!(n−k)!{}_n C_k = \frac{n!}{k!(n-k)!}nCk=k!(n−k)!n!を思い出す。nCkn+1+knCk\frac{{}_n C_k}{n+1+k {}_n C_k}n+1+knCknCk を変形することを考える。nCk=n!k!(n−k)!{}_n C_k = \frac{n!}{k!(n-k)!}nCk=k!(n−k)!n!なので、knCk=kn!k!(n−k)!=n!(k−1)!(n−k)!=n!(k−1)!(n−k)!nn=n(n−1)!(k−1)!((n−1)−(k−1))!=nn−1Ck−1k{}_n C_k = k \frac{n!}{k!(n-k)!} = \frac{n!}{(k-1)!(n-k)!} = \frac{n!}{(k-1)!(n-k)!} \frac{n}{n} = n\frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} = n {}_{n-1} C_{k-1}knCk=kk!(n−k)!n!=(k−1)!(n−k)!n!=(k−1)!(n−k)!n!nn=n(k−1)!((n−1)−(k−1))!(n−1)!=nn−1Ck−1よって、nCkn+1+knCk=nCkn+1+nn−1Ck−1=nCkn+1+n(n−1)!(k−1)!(n−k)!=nCkn+1+n(n−1)!(k−1)!(n−k)!\frac{{}_n C_k}{n+1+k {}_n C_k} = \frac{{}_n C_k}{n+1+n{}_{n-1} C_{k-1}} = \frac{{}_n C_k}{n+1+n\frac{(n-1)!}{(k-1)!(n-k)!}} = \frac{{}_n C_k}{n+1+n\frac{(n-1)!}{(k-1)!(n-k)!}}n+1+knCknCk=n+1+nn−1Ck−1nCk=n+1+n(k−1)!(n−k)!(n−1)!nCk=n+1+n(k−1)!(n−k)!(n−1)!nCk別の方法を試す。nCkn+1+knCk=n!k!(n−k)!(n+1+kn!k!(n−k)!)=n!k!(n−k)!n+1+kn!k!(n−k)!\frac{{}_n C_k}{n+1+k {}_n C_k} = \frac{n!}{k!(n-k)!(n+1+k\frac{n!}{k!(n-k)!})} = \frac{\frac{n!}{k!(n-k)!}}{n+1+k\frac{n!}{k!(n-k)!}}n+1+knCknCk=k!(n−k)!(n+1+kk!(n−k)!n!)n!=n+1+kk!(n−k)!n!k!(n−k)!n!ここでS=∑k=0nnCkn+1+knCkS = \sum_{k=0}^{n} \frac{{}_n C_k}{n+1+k {}_n C_k}S=∑k=0nn+1+knCknCkを求める。n+1=(n−k+1+k)n+1 = (n-k+1+k)n+1=(n−k+1+k)より、S=∑k=0nnCk(n−k+1)+k(1+nCk)S = \sum_{k=0}^{n} \frac{{}_n C_k}{(n-k+1)+k(1+{}_n C_k)}S=∑k=0n(n−k+1)+k(1+nCk)nCkこれはうまくいかない。nCk=nkn−1Ck−1{}_n C_k = \frac{n}{k} {}_{n-1} C_{k-1}nCk=knn−1Ck−1を使うと、nCkn+1+knCk=nkn−1Ck−1n+1+knkn−1Ck−1=nn−1Ck−1k(n+1+nn−1Ck−1)\frac{{}_n C_k}{n+1+k {}_n C_k} = \frac{\frac{n}{k} {}_{n-1} C_{k-1}}{n+1+k \frac{n}{k}{}_{n-1} C_{k-1}} = \frac{n {}_{n-1} C_{k-1}}{k(n+1+n{}_{n-1} C_{k-1})} n+1+knCknCk=n+1+kknn−1Ck−1knn−1Ck−1=k(n+1+nn−1Ck−1)nn−1Ck−1これも難しそう正攻法でnCk=n!k!(n−k)!{}_n C_k = \frac{n!}{k!(n-k)!}nCk=k!(n−k)!n!を使うと、nCkn+1+knCk=n!k!(n−k)!n+1+kn!k!(n−k)!=n!(n+1)k!(n−k)!+kn!\frac{{}_n C_k}{n+1+k {}_n C_k} = \frac{\frac{n!}{k!(n-k)!}}{n+1+k \frac{n!}{k!(n-k)!}} = \frac{n!}{(n+1)k!(n-k)!+kn!}n+1+knCknCk=n+1+kk!(n−k)!n!k!(n−k)!n!=(n+1)k!(n−k)!+kn!n!n!(n+1)k!(n−k)!+kn!=(n+1)!(n+1)k!(n−k)!+(n+1)kn!1n+1=(n+1)!(n+1)k!(n−k)!+k(n+1)!1n+1=(n+1)!k!(n−k)!n+1+kn!k!(n−k)!(n+1)1n+1\frac{n!}{(n+1)k!(n-k)!+kn!} = \frac{(n+1)!}{(n+1)k!(n-k)!+(n+1)kn!} \frac{1}{n+1} = \frac{(n+1)!}{(n+1)k!(n-k)!+k(n+1)!}\frac{1}{n+1} = \frac{\frac{(n+1)!}{k!(n-k)!}}{n+1+k\frac{n!}{k!(n-k)!}(n+1)} \frac{1}{n+1}(n+1)k!(n−k)!+kn!n!=(n+1)k!(n−k)!+(n+1)kn!(n+1)!n+11=(n+1)k!(n−k)!+k(n+1)!(n+1)!n+11=n+1+kk!(n−k)!n!(n+1)k!(n−k)!(n+1)!n+11再びnCk{}_n C_knCkの定義に戻るnCkn+1+knCk=1n+1−knCk(n+1)(n+1+knCk)\frac{{}_n C_k}{n+1+k {}_n C_k} = \frac{1}{n+1} - \frac{k {}_n C_k}{(n+1)(n+1+k {}_n C_k)}n+1+knCknCk=n+11−(n+1)(n+1+knCk)knCk答えは n+1n+2\frac{n+1}{n+2}n+2n+13. 最終的な答えnn+1\frac{n}{n+1}n+1n