与えられた2次関数 $y = 2(x-3)^2$ の頂点の座標を求める問題です。

代数学二次関数頂点平方完成
2025/7/14

1. 問題の内容

与えられた2次関数 y=2(x3)2y = 2(x-3)^2 の頂点の座標を求める問題です。

2. 解き方の手順

2次関数の一般形は y=a(xp)2+qy = a(x-p)^2 + q で表され、このとき頂点の座標は (p,q)(p, q) となります。
与えられた関数 y=2(x3)2y = 2(x-3)^2 をこの形と比較すると、a=2a = 2, p=3p = 3, q=0q = 0 であることがわかります。
したがって、頂点の座標は (3,0)(3, 0) となります。

3. 最終的な答え

頂点の座標は (3,0)(3, 0) です。

「代数学」の関連問題

与えられた4x4行列の行列式を計算する問題です。行列は以下の通りです。 $ \begin{vmatrix} 2 & 0 & 0 & x \\ 0 & -6 & 5 & 0 \\ 0 & x & 10 ...

行列式余因子展開線形代数
2025/7/14

与えられた3つの行列を、適切な正則行列を用いて対角化する問題です。

行列固有値固有ベクトル対角化線形代数
2025/7/14

与えられた3つの行列を、適切な正則行列を用いて対角化する問題です。行列はそれぞれ (1) $\begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$, (2) $\...

行列対角化固有値固有ベクトル
2025/7/14

与えられた3つの行列を、適切な正則行列を用いて対角化する問題です。 (1) $\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$ (2) $\begin{pm...

線形代数行列対角化固有値固有ベクトル
2025/7/14

問題1: 関数 $y = x^2 + 3x$ において、$y$は$x$の何関数であるかを四択から選びます。 問題2: 関数 $y = 2x^2$ のグラフと $y = -2x^2$ のグラフを比べたと...

二次関数グラフ対称移動
2025/7/14

$y = x^2 + 3x$ のように、$x$ の関数 $y$ が $x$ の2次式で表されるとき、$y$ は $x$ の何であるかを、選択肢の中から選んで答える問題です。

2次関数関数二次式
2025/7/14

与えられた行列を適切な正則行列を用いて対角化する問題です。3つの行列について対角化を行います。

線形代数行列対角化固有値固有ベクトル
2025/7/14

次の計算問題を解きます。 $2\frac{1}{6} \times 4^{-\frac{1}{3}} \div 8^{\frac{3}{2}}$

指数法則分数計算指数計算
2025/7/14

与えられた式 $a(x+y) + b(x+y)$ を因数分解する問題です。まず、$x+y$ を $A$ と置き換え、共通因数でくくり、その後 $A$ を元の $x+y$ に戻して因数分解を完了させます...

因数分解式の展開共通因数
2025/7/14

与えられた3つの行列を、それぞれ適切な正則行列を用いて対角化する問題です。

線形代数行列対角化固有値固有ベクトル
2025/7/14