関数 $f(x) = \sqrt{2x+1}$ を、導関数の定義に従って微分する問題です。解析学微分導関数極限関数の微分有理化2025/7/141. 問題の内容関数 f(x)=2x+1f(x) = \sqrt{2x+1}f(x)=2x+1 を、導関数の定義に従って微分する問題です。2. 解き方の手順導関数の定義は、f′(x)=limh→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}f′(x)=limh→0hf(x+h)−f(x)です。これを用いて f′(x)f'(x)f′(x) を求めます。まず、f(x+h)f(x+h)f(x+h) を計算します。f(x+h)=2(x+h)+1=2x+2h+1f(x+h) = \sqrt{2(x+h)+1} = \sqrt{2x+2h+1}f(x+h)=2(x+h)+1=2x+2h+1次に、f(x+h)−f(x)f(x+h) - f(x)f(x+h)−f(x) を計算します。f(x+h)−f(x)=2x+2h+1−2x+1f(x+h) - f(x) = \sqrt{2x+2h+1} - \sqrt{2x+1}f(x+h)−f(x)=2x+2h+1−2x+1この式を hhh で割ると、f(x+h)−f(x)h=2x+2h+1−2x+1h\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{2x+2h+1} - \sqrt{2x+1}}{h}hf(x+h)−f(x)=h2x+2h+1−2x+1この式に limh→0\lim_{h \to 0}limh→0 を適用すると不定形になるので、分子を有理化します。2x+2h+1−2x+1h=(2x+2h+1−2x+1)(2x+2h+1+2x+1)h(2x+2h+1+2x+1)\frac{\sqrt{2x+2h+1} - \sqrt{2x+1}}{h} = \frac{(\sqrt{2x+2h+1} - \sqrt{2x+1})(\sqrt{2x+2h+1} + \sqrt{2x+1})}{h(\sqrt{2x+2h+1} + \sqrt{2x+1})}h2x+2h+1−2x+1=h(2x+2h+1+2x+1)(2x+2h+1−2x+1)(2x+2h+1+2x+1)=(2x+2h+1)−(2x+1)h(2x+2h+1+2x+1)=2hh(2x+2h+1+2x+1)= \frac{(2x+2h+1) - (2x+1)}{h(\sqrt{2x+2h+1} + \sqrt{2x+1})} = \frac{2h}{h(\sqrt{2x+2h+1} + \sqrt{2x+1})}=h(2x+2h+1+2x+1)(2x+2h+1)−(2x+1)=h(2x+2h+1+2x+1)2h=22x+2h+1+2x+1= \frac{2}{\sqrt{2x+2h+1} + \sqrt{2x+1}}=2x+2h+1+2x+12したがって、f′(x)=limh→022x+2h+1+2x+1=22x+1+2x+1=222x+1=12x+1f'(x) = \lim_{h \to 0} \frac{2}{\sqrt{2x+2h+1} + \sqrt{2x+1}} = \frac{2}{\sqrt{2x+1} + \sqrt{2x+1}} = \frac{2}{2\sqrt{2x+1}} = \frac{1}{\sqrt{2x+1}}f′(x)=limh→02x+2h+1+2x+12=2x+1+2x+12=22x+12=2x+113. 最終的な答えf′(x)=12x+1f'(x) = \frac{1}{\sqrt{2x+1}}f′(x)=2x+11