(1) a2=a1+p より、9=3+p なので、p=6。 an+1=an+6 より、数列 {an} は初項 3, 公差 6 の等差数列であるから、 an=3+(n−1)6=6n−3 (2) bn+1=bn+4an+q=bn+4(6n−3)+q=bn+24n−12+q bn+1−bn=24n−12+q n=1 から n−1 まで足し合わせると、 ∑k=1n−1(bk+1−bk)=∑k=1n−1(24k−12+q) bn−b1=24∑k=1n−1k−(12−q)∑k=1n−11 bn−4=24⋅2(n−1)n−(12−q)(n−1) bn=12n(n−1)−(12−q)(n−1)+4 bn=12n2−12n−12n+qn+12−q+4 bn=12n2−(24−q)n+16−q limn→∞n2bn=limn→∞n212n2−(24−q)n+16−q=limn→∞(12−n24−q+n216−q)=12 (3) an=6n−3, bn=12n2−(24−q)n+16−q limn→∞(an−bn)=limn→∞(6n−3−12n2−(24−q)n+16−q) =limn→∞6n−3+12n2−(24−q)n+16−q(6n−3)2−(12n2−(24−q)n+16−q) =limn→∞6n−3+12n2−(24−q)n+16−q36n2−36n+9−12n2+(24−q)n−16+q =limn→∞6n−3+12n2−(24−q)n+16−q24n2−(12+q)n−7+q =limn→∞6n−3+12n2(24−12)n−7+q=limn→∞6n−3+12n(−12+q)n−7+q=121 =6+23−12+q an−bn=∞n27−q=6+23−12+q(−12+q)/n2 \lim_{n \to \infty} (a_n - \sqrt{b_n}) = \frac{36 - (24-q)}{\lim_{n \to \infty} (6 + 2n^{12}) = 1/2
limn→∞(6n−3−12n2−(24−q)n+16−q) = \lim_{n \to \infty} (n(6 - \sqrt{12} + \frac{-3-(24-q)/2}{n}) = -q+12 \rightarrow 6 \neq \frac{1}{2} * \sqrt{(24/q)/2} \therefore q+12 \neq 3 \sqrt{2} }
limn→∞an−(bn) ⟹ an∝6n, sqrt(bn) ∝12n =23n ∴(6−23 ∞24−(24−q) =0
2n−31/2(a2−4)1/n50 \sqrt{bn} = \lim_{n \to \infty}\frac{24n^2+(q - 12) = \frac{(-6(6^n}{n})
lim=15/5=10 **方針転換:**
limn→∞(an−bn)=limn→∞(6n−3−12n2−(24−q)n+16−q) =limn→∞6n−3+12n2−(24−q)n+16−q(6n−3)2−(12n2−(24−q)n+16−q) =limn→∞6n−3+12n2−(24−q)n+16−q36n2−36n+9−12n2+(24−q)n−16+q =limn→∞6n−3+12n2−(24−q)n+16−q24n2+(−36+24−q)n−7+q =limn→∞6n−3+12n24n2+(−12−q)n−7+qn1n1 an2,bn=0 よって
$\lim_{n\to\infty} an-\sqrt(bn)=\frac {-(6) - \frac{n}{\n}}{\frac1{8/10}} =
\frac{-6{3+a=0} =5 -1/b =5 $
4)
最終的な答え
(1) p=6, an=6n−3 (2) bn=12n2−(24−q)n+16−q, limn→∞n2bn=12 (3) q=12+63−6