1年生2人、2年生2人、3年生3人の合計7人の生徒を横一列に並べる問題を考える。ただし、同じ学年の生徒であっても個人を区別する。 (1) 並び方の総数を求める。 (2) 両端に3年生が並ぶ並び方の総数を求める。 (3) 3年生の3人が隣り合う並び方の総数を求める。 (4) 1年生の2人、2年生の2人、3年生の3人がそれぞれ隣り合う並び方の総数を求める。

離散数学順列組み合わせ場合の数階乗
2025/7/15
## 問題11

1. 問題の内容

1年生2人、2年生2人、3年生3人の合計7人の生徒を横一列に並べる問題を考える。ただし、同じ学年の生徒であっても個人を区別する。
(1) 並び方の総数を求める。
(2) 両端に3年生が並ぶ並び方の総数を求める。
(3) 3年生の3人が隣り合う並び方の総数を求める。
(4) 1年生の2人、2年生の2人、3年生の3人がそれぞれ隣り合う並び方の総数を求める。

2. 解き方の手順

(1) 7人全員の並び方なので、7! (7の階乗) を計算する。同じ学年の生徒がそれぞれ区別できるので、これで良い。
7!=7×6×5×4×3×2×1=50407! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040
(2) まず両端に3年生を並べる。両端の並べ方は 3×2=63 \times 2 = 6 通り。残りの5人の並べ方は 5!5! 通り。したがって、求める並び方は 6×5!6 \times 5! 通り。
5!=5×4×3×2×1=1205! = 5 \times 4 \times 3 \times 2 \times 1 = 120
6×120=7206 \times 120 = 720
(3) 3年生3人をまとめて1つのグループとして考え、残りの4人と合わせて5つのものを並べると考える。この5つのものの並べ方は 5!5! 通り。さらに、3年生の3人の並べ方は 3!3! 通り。したがって、求める並び方は 5!×3!5! \times 3! 通り。
3!=3×2×1=63! = 3 \times 2 \times 1 = 6
5!×3!=120×6=7205! \times 3! = 120 \times 6 = 720
(4) 1年生、2年生、3年生それぞれのグループを1つの塊として並べる。3つの塊の並べ方は 3!3! 通り。1年生の2人の並べ方は 2!2! 通り。2年生の2人の並べ方も 2!2! 通り。3年生の3人の並べ方は 3!3! 通り。したがって、求める並び方は 3!×2!×2!×3!3! \times 2! \times 2! \times 3! 通り。
2!=2×1=22! = 2 \times 1 = 2
3!×2!×2!×3!=6×2×2×6=1443! \times 2! \times 2! \times 3! = 6 \times 2 \times 2 \times 6 = 144

3. 最終的な答え

(1) 5040通り
(2) 720通り
(3) 720通り
(4) 144通り

「離散数学」の関連問題

7個の数字1, 1, 2, 2, 3, 3, 3をすべて並べてできる7桁の整数は全部で何個あるかを求める問題です。

順列組み合わせ場合の数重複順列
2025/7/20

図のような街路があり、遠回りをしないという条件で、以下の2つの問題に答えます。 (7) AからBまで行くとき、Cを通る道順は何通りあるか。 (8) D地点が工事中で通行止めになっているとき、AからBま...

組み合わせ場合の数順列
2025/7/20

42人の生徒のうち、自転車利用者が35人、電車利用者が30人である。 - どちらも利用していない生徒の最大人数を求める。 - 両方とも利用している生徒の最小人数を求める。 - 自転車だけを利用している...

集合ベン図最大最小
2025/7/20

集合 $A = \{2, 10\}$, $B = \{1, 2, 3, 4, 5\}$, $C = \{2, 4, 6, 8, 10\}$ が与えられています。 (1) 次の事柄を集合の記号を用いて表...

集合集合の演算包含関係共通部分和集合
2025/7/20

2つの集合A, Bがあり、$n(A) + n(B) = 10$ かつ $n(A \cup B) = 7$であるとき、$n(\overline{A \cap B}) + n(A \cap \overli...

集合集合演算要素数
2025/7/19

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$、部分集合 $A = \{3, 6, 7\}$、 $B = \{2, 3, 5, 7\}$ が与えられています。 以下の集合を...

集合補集合集合演算
2025/7/19

2つの集合AとBが与えられたとき、それらの共通部分 $A \cap B$ と和集合 $A \cup B$ を求める問題です。

集合集合演算共通部分和集合
2025/7/19

全体集合 $U$ を25以下の自然数全体の集合とし、$U$ の部分集合 $A, B, C$ が与えられています。 $A = \{x \mid x \text{ は24の約数}\}$ $B = \{x ...

集合集合演算補集合共通部分
2025/7/18

与えられた情報:全体集合 $U$ の要素数 $n(U) = 100$、部分集合 $A$ の要素数 $n(A) = 60$、部分集合 $B$ の要素数 $n(B) = 40$、共通部分 $A \cap ...

集合要素数補集合和集合共通部分
2025/7/18

A, B, C, Dの4県がこの順に並んでいます。A県からD県まで行く方法が何通りあるか求める問題です。ただし、交通手段には制限があります。 * A→B:手段なし * B→C:電車、バス、モノ...

組み合わせ場合の数経路探索
2025/7/18