1. 問題の内容
7個の数字1, 1, 2, 2, 3, 3, 3をすべて並べてできる7桁の整数は全部で何個あるかを求める問題です。
2. 解き方の手順
同じものを含む順列の考え方を使います。7個の数字を並べるので、全体では7!通りの並べ方があります。しかし、1が2個、2が2個、3が3個あるので、それぞれ同じ数字の並び替えを考慮する必要があります。したがって、7!を1が2個の並び替え2!、2が2個の並び替え2!、3が3個の並び替え3!で割る必要があります。
したがって、求める場合の数は次のようになります。
ここで、
したがって、
3. 最終的な答え
210個