与えられた画像には、数学の問題そのものは書かれていません。「方程式を作って問題を解く手順を振り返ってみましょう」という指示が書かれています。したがって、ここでは指示に従い、方程式を立てて問題を解く例を自分で作成し、その解き方を説明します。

代数学一次方程式文章問題数量関係
2025/7/15

1. 問題の内容

与えられた画像には、数学の問題そのものは書かれていません。「方程式を作って問題を解く手順を振り返ってみましょう」という指示が書かれています。したがって、ここでは指示に従い、方程式を立てて問題を解く例を自分で作成し、その解き方を説明します。

2. 解き方の手順

例として、次のような問題を考えます。
「ある店で、1個120円のりんごと1個80円のみかんを合わせて15個買ったところ、代金の合計は1560円でした。りんごは何個買いましたか?」
まず、りんごの個数を xx とおきます。みかんの個数は、合わせて15個なので、15x15 - x となります。
りんごの代金は 120x120x 円、みかんの代金は 80(15x)80(15 - x) 円です。
代金の合計は1560円なので、次の方程式が立てられます。
120x+80(15x)=1560120x + 80(15 - x) = 1560
この方程式を解きます。
120x+120080x=1560120x + 1200 - 80x = 1560
40x=36040x = 360
x=9x = 9
したがって、りんごは9個買ったことになります。

3. 最終的な答え

りんごを9個買いました。

「代数学」の関連問題

与えられた2次関数の最大値、または最小値を求める問題です。具体的には、 (2) $y = -3x^2 + 2$ (3) $y = x^2 - 4x - 4$ (4) $y = -2x^2 - 4x -...

二次関数最大値最小値平方完成グラフ
2025/7/16

問題は、不等式 $2a + 3b \leq 2000$ が与えられたときに、この不等式を満たす $a$ と $b$ の条件を見つけることだと考えられます。しかし、問題文だけでは、$a$と$b$がどのよ...

不等式線形不等式実数
2025/7/16

正方形のカードを横に1cmずつ重ねて並べて貼る。 (1) 4枚貼ったときの全体の横の長さを求める。 (2) n枚貼ったときの全体の横の長さをnを使って表す。 (3) クラスの人数が34人で、掲示板の横...

一次式応用問題数量関係計算
2025/7/16

次の2つの計算問題を解きます。 (1) $(6x + 18) \div 3$ (2) $(-42a + 28) \div (-7)$

式の計算分配法則一次式
2025/7/16

次の漸化式で定義される数列 $\{a_n\}$ の一般項を求めます。 (1) $a_1 = 3, a_{n+1} = a_n + 2$ (2) $a_1 = -4, a_{n+1} = 3a_n$ (...

数列漸化式等差数列等比数列階差数列特性方程式
2025/7/16

次の式の値を計算し、$\square + \square \sqrt{\square}$ の形式で表す問題です。 $\frac{1}{2-\sqrt{3}} + \frac{\sqrt{3}+1}{\...

式の計算分母の有理化平方根
2025/7/16

数列$\{a_n\}$の初項から第$n$項までの和を$S_n = (n+1)^2$とするとき、以下の問いに答えます。 (1) 一般項$a_n$を求めます。 (2) $\sum_{k=1}^{n} \f...

数列級数一般項和の公式
2025/7/16

$a_1, ..., a_n, b$ を $\mathbb{R}^m$ のベクトルとし、$A = [a_1, ..., a_n]$ を $m \times n$ 行列とします。このとき、以下の3つの条...

線形代数ベクトル行列一次結合次元同値性連立方程式
2025/7/16

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ が与えられたとき、$\mathbb{R}^n$ のある基底 $\{a_1, \dots, a_n\}$ と $\math...

線形写像表現行列基底標準形線形代数
2025/7/16

線形写像 $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ が与えられたとき、$\mathbb{R}^n$ のある基底 $\{a_1, ..., a_n\}$ と ...

線形代数線形写像表現行列基底標準形ランク
2025/7/16