与えられた直角三角形において、sin 60°の値を求める問題です。三角形の各辺の長さは、斜辺が2、底辺が1、高さが$\sqrt{3}$で与えられています。

幾何学三角比sin直角三角形
2025/7/16

1. 問題の内容

与えられた直角三角形において、sin 60°の値を求める問題です。三角形の各辺の長さは、斜辺が2、底辺が1、高さが3\sqrt{3}で与えられています。

2. 解き方の手順

sin関数の定義を思い出します。直角三角形において、sinθは「対辺/斜辺」で定義されます。
今回の問題では、角度は60°なので、
sin60°=対辺斜辺sin 60° = \frac{対辺}{斜辺}
与えられた三角形において、60°の角度に対する対辺は3\sqrt{3}、斜辺は2です。したがって、
sin60°=32sin 60° = \frac{\sqrt{3}}{2}

3. 最終的な答え

32\frac{\sqrt{3}}{2}

「幾何学」の関連問題

与えられた展開図から組み立てられる立体について、立体の名前、底面の円の半径、および表面積を求める問題です。展開図は、半径6cm、中心角120度の扇形と円で構成されています。

立体図形円錐表面積扇形半径円周率
2025/7/19

与えられた正二十面体の展開図を組み立てたとき、互いに平行となる面の組み合わせとして正しいものを選択肢の中から選ぶ問題です。選択肢は以下の通りです。 1. FとI

正二十面体展開図空間図形立体図形
2025/7/19

問題は、与えられた平面図、正面図、右側面図に対応する立体の見取り図を選択する問題です。

立体図形三次元図形投影図見取り図
2025/7/19

xy平面上に3点O(0,0), A(-1,-2), B(1,-2)がある。線分OAを$(1-\alpha):\alpha$の比に分ける点をP、線分OBを$(1-\alpha):\alpha$の比に分け...

ベクトル内分点領域
2025/7/19

$xy$ 平面上の放物線 $x^2 - 8y - 6x + 17 = 0$ の準線の方程式を求める問題です。

放物線準線平方完成平行移動
2025/7/19

$xy$平面において、方程式 $x^2 - 8y - 6x + 17 = 0$ が表す放物線の焦点の $x$ 座標を求める。

放物線焦点平行移動二次曲線
2025/7/19

$xy$平面において、方程式 $y^2 - 4x + 6y + 1 = 0$ で表される放物線の準線を求める問題です。

放物線準線二次曲線座標平面
2025/7/19

与えられた放物線の方程式 $y^2 - 4x + 6y + 1 = 0$ の頂点の $y$ 座標を求める問題です。

放物線頂点平方完成二次曲線
2025/7/19

$xy$平面上の方程式 $y^2 - 4x + 6y + 1 = 0$ が表す放物線の頂点の $x$ 座標を求める。

放物線頂点座標平方完成
2025/7/19

与えられた放物線の方程式 $y^2 - 4x + 6y + 1 = 0$ の焦点のx座標を求める問題です。

放物線焦点二次曲線標準形
2025/7/19