関数 $y = 2^x$ のグラフを、$x$ 方向に $-1$、$y$ 方向に $4$ 平行移動させたグラフを、選択肢の中から選びます。

代数学指数関数グラフ平行移動関数
2025/7/16

1. 問題の内容

関数 y=2xy = 2^x のグラフを、xx 方向に 1-1yy 方向に 44 平行移動させたグラフを、選択肢の中から選びます。

2. 解き方の手順

平行移動のルールに従い、xx 方向に 1-1 移動させるには xxx+1x+1 に、yy 方向に 44 移動させるには yyy4y-4 に置き換えます。
元の式は y=2xy = 2^x です。
yyy4y-4 に、xxx+1x+1 に置き換えると、
y4=2x+1y-4 = 2^{x+1}
となります。
これを yy について解くと、
y=2x+1+4y = 2^{x+1} + 4
となります。
ここで、指数法則 am+n=amana^{m+n} = a^m \cdot a^n を用いると、
y=2x21+4y = 2^x \cdot 2^1 + 4
y=22x+4y = 2 \cdot 2^x + 4
となります。
選択肢を見ると、これが4番の選択肢と一致します。

3. 最終的な答え

4

「代数学」の関連問題

昨年の全校生徒数が440人の中学校がある。今年は男子が10%減少し、女子が5%増加した結果、全校生徒数は14人減少した。昨年の男子の人数を$x$人、女子の人数を$y$人として、以下の問いに答える。 (...

連立方程式文章題割合方程式
2025/7/16

シュートを $x$ 本放ったとき、ゴールしたのがそのうちの10%だった。ゴールの数は $y$ 本である。この数量の関係を等式で表しなさい。

一次方程式割合数量の関係文字式
2025/7/16

ある中学校の昨年の全校生徒数は440人でした。今年は男子が10%減少し、女子が5%増加したため、全校生徒は14人減少しました。 (1) 昨年の男子の人数を $x$ 人、女子の人数を $y$ 人として、...

連立方程式文章問題割合人数
2025/7/16

昨年の生徒数が男女合わせて440人の中学校がある。今年は男子が10%減少し、女子が5%増加した結果、全校生徒が14人減少した。昨年の男子の人数を$x$人、女子の人数を$y$人として、昨年の人数に関する...

連立方程式文章問題割合
2025/7/16

スーパーマーケットまで1200mの距離を、最初は80m/分で歩き、途中から60m/分で歩いたところ、合計19分かかった。80m/分で歩いた距離を $x$ m、60m/分で歩いた距離を $y$ mとする...

連立方程式文章問題一次方程式
2025/7/16

1200m離れたスーパーマーケットへ行くのに、最初は80m/分で歩き、途中から60m/分で歩いたところ、全部で19分かかった。 (1) 80m/分で歩いた距離を$x$ m、60m/分で歩いた距離を$y...

連立方程式文章問題距離時間速さ
2025/7/16

1200m離れたスーパーマーケットまで買い物に行くのに、最初は80m/分で歩き、途中から60m/分で歩いたところ、全部で19分かかった。80m/分で歩いた距離を $x$ m、60m/分で歩いた距離を ...

文章問題方程式一次方程式距離
2025/7/16

2桁の整数があり、十の位の数と一の位の数の和は6である。また、十の位と一の位の数を入れ替えた整数は、元の整数よりも18大きくなる。このとき、元の2桁の整数を求める。

連立方程式文章問題2桁の整数
2025/7/16

不等式 $x^2 - 2x + m \geq 0$ が、指定された範囲 $-2 \leq x \leq 0$ で常に成り立つような定数 $m$ の値の範囲を求める問題です。

二次不等式二次関数不等式最大値と最小値
2025/7/16

問題は、十の位と一の位の数の和が6になる2桁の整数があり、十の位と一の位を入れ替えた整数が元の整数より18大きくなるというものです。この状況を数式で表す問題です。 具体的には、$10x + y = \...

連立方程式整数方程式の解法
2025/7/16