$n$ が1以上の任意の整数のとき、以下の式が成り立つことを数学的帰納法で証明する過程において、空欄 $a$ から $e$ に当てはまる整数を答える問題です。 $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{1}{6}n(n+1)(2n+1)$
2025/7/16
1. 問題の内容
が1以上の任意の整数のとき、以下の式が成り立つことを数学的帰納法で証明する過程において、空欄 から に当てはまる整数を答える問題です。
2. 解き方の手順
(ii) の続きを計算していく。
まず、 である。
右辺を でくくると、
となる。
したがって、 である。
と表せることから、 となる。
したがって、, , となる。
(検算: )