与えられた10個の対数の式をそれぞれ簡単にします。代数学対数対数法則指数法則2025/7/161. 問題の内容与えられた10個の対数の式をそれぞれ簡単にします。2. 解き方の手順(1) log124\log_{\frac{1}{2}}4log214 log124=log2−122=2−1log22=−2\log_{\frac{1}{2}}4 = \log_{2^{-1}}2^2 = \frac{2}{-1} \log_2 2 = -2log214=log2−122=−12log22=−2(2) log223\log_2 \sqrt[3]{2}log232log223=log2213=13log22=13\log_2 \sqrt[3]{2} = \log_2 2^{\frac{1}{3}} = \frac{1}{3} \log_2 2 = \frac{1}{3}log232=log2231=31log22=31(3) log100.0001\log_{10} 0.0001log100.0001log100.0001=log1010−4=−4log1010=−4\log_{10} 0.0001 = \log_{10} 10^{-4} = -4 \log_{10} 10 = -4log100.0001=log1010−4=−4log1010=−4(4) log0.516\log_{0.5} 16log0.516log0.516=log1224=log2−124=4−1log22=−4\log_{0.5} 16 = \log_{\frac{1}{2}} 2^4 = \log_{2^{-1}} 2^4 = \frac{4}{-1} \log_2 2 = -4log0.516=log2124=log2−124=−14log22=−4(5) log23⋅log34\log_2 3 \cdot \log_3 4log23⋅log34log23⋅log34=log23⋅log322=log23⋅2log32=2log23⋅1log23=2\log_2 3 \cdot \log_3 4 = \log_2 3 \cdot \log_3 2^2 = \log_2 3 \cdot 2 \log_3 2 = 2 \log_2 3 \cdot \frac{1}{\log_2 3} = 2log23⋅log34=log23⋅log322=log23⋅2log32=2log23⋅log231=2(6) log104+log1025\log_{10} 4 + \log_{10} 25log104+log1025log104+log1025=log10(4×25)=log10100=log10102=2\log_{10} 4 + \log_{10} 25 = \log_{10} (4 \times 25) = \log_{10} 100 = \log_{10} 10^2 = 2log104+log1025=log10(4×25)=log10100=log10102=2(7) log363−log321\log_3 63 - \log_3 21log363−log321log363−log321=log36321=log33=1\log_3 63 - \log_3 21 = \log_3 \frac{63}{21} = \log_3 3 = 1log363−log321=log32163=log33=1(8) log250−log425+log285\log_2 50 - \log_4 25 + \log_2 \frac{8}{5}log250−log425+log258log250−log425+log285=log250−log225log24+log285=log250−log2522+log285=log250−2log252+log285=log250−log25+log285=log2505+log285=log210+log285=log2(10×85)=log216=log224=4\log_2 50 - \log_4 25 + \log_2 \frac{8}{5} = \log_2 50 - \frac{\log_2 25}{\log_2 4} + \log_2 \frac{8}{5} = \log_2 50 - \frac{\log_2 5^2}{2} + \log_2 \frac{8}{5} = \log_2 50 - \frac{2\log_2 5}{2} + \log_2 \frac{8}{5} = \log_2 50 - \log_2 5 + \log_2 \frac{8}{5} = \log_2 \frac{50}{5} + \log_2 \frac{8}{5} = \log_2 10 + \log_2 \frac{8}{5} = \log_2 (10 \times \frac{8}{5}) = \log_2 16 = \log_2 2^4 = 4log250−log425+log258=log250−log24log225+log258=log250−2log252+log258=log250−22log25+log258=log250−log25+log258=log2550+log258=log210+log258=log2(10×58)=log216=log224=4(9) 12log218−log238\frac{1}{2}\log_2 18 - \log_2 \frac{3}{8}21log218−log28312log218−log238=log21812−log238=log218−log238=log232−log238=log23238=log2(32×83)=log282=log223⋅212=log2272=72\frac{1}{2}\log_2 18 - \log_2 \frac{3}{8} = \log_2 18^{\frac{1}{2}} - \log_2 \frac{3}{8} = \log_2 \sqrt{18} - \log_2 \frac{3}{8} = \log_2 3\sqrt{2} - \log_2 \frac{3}{8} = \log_2 \frac{3\sqrt{2}}{\frac{3}{8}} = \log_2 (3\sqrt{2} \times \frac{8}{3}) = \log_2 8\sqrt{2} = \log_2 2^3 \cdot 2^{\frac{1}{2}} = \log_2 2^{\frac{7}{2}} = \frac{7}{2}21log218−log283=log21821−log283=log218−log283=log232−log283=log28332=log2(32×38)=log282=log223⋅221=log2227=27(10) log49log23\frac{\log_4 9}{\log_2 3}log23log49log49log23=log432log23=2log43log23=2log23log24log23=2log232log23=log23log23=1\frac{\log_4 9}{\log_2 3} = \frac{\log_4 3^2}{\log_2 3} = \frac{2\log_4 3}{\log_2 3} = \frac{2\frac{\log_2 3}{\log_2 4}}{\log_2 3} = \frac{2\frac{\log_2 3}{2}}{\log_2 3} = \frac{\log_2 3}{\log_2 3} = 1log23log49=log23log432=log232log43=log232log24log23=log2322log23=log23log23=13. 最終的な答え(1) -2(2) 1/3(3) -4(4) -4(5) 2(6) 2(7) 1(8) 4(9) 7/2(10) 1