定積分 $\int_{1}^{2} \frac{\log(x+1)}{x^2} dx = \log c$ を満たす実数 $c$ を求める問題です。解析学定積分部分積分対数関数2025/7/161. 問題の内容定積分 ∫12log(x+1)x2dx=logc\int_{1}^{2} \frac{\log(x+1)}{x^2} dx = \log c∫12x2log(x+1)dx=logc を満たす実数 ccc を求める問題です。2. 解き方の手順まず、定積分 ∫12log(x+1)x2dx\int_{1}^{2} \frac{\log(x+1)}{x^2} dx∫12x2log(x+1)dx を部分積分を用いて計算します。u=log(x+1)u = \log(x+1)u=log(x+1), dv=1x2dxdv = \frac{1}{x^2}dxdv=x21dx とおくと、du=1x+1dxdu = \frac{1}{x+1}dxdu=x+11dx, v=−1xv = -\frac{1}{x}v=−x1 となります。部分積分の公式 ∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vdu より、∫12log(x+1)x2dx=[−log(x+1)x]12−∫12−1x⋅1x+1dx\int_{1}^{2} \frac{\log(x+1)}{x^2} dx = \left[-\frac{\log(x+1)}{x}\right]_{1}^{2} - \int_{1}^{2} -\frac{1}{x} \cdot \frac{1}{x+1} dx∫12x2log(x+1)dx=[−xlog(x+1)]12−∫12−x1⋅x+11dx=[−log(x+1)x]12+∫121x(x+1)dx= \left[-\frac{\log(x+1)}{x}\right]_{1}^{2} + \int_{1}^{2} \frac{1}{x(x+1)} dx=[−xlog(x+1)]12+∫12x(x+1)1dx=[−log(3)2+log(2)]+∫12(1x−1x+1)dx= \left[-\frac{\log(3)}{2} + \log(2)\right] + \int_{1}^{2} \left(\frac{1}{x} - \frac{1}{x+1}\right) dx=[−2log(3)+log(2)]+∫12(x1−x+11)dx=−log(3)2+log(2)+[logx−log(x+1)]12= -\frac{\log(3)}{2} + \log(2) + \left[\log x - \log(x+1)\right]_{1}^{2}=−2log(3)+log(2)+[logx−log(x+1)]12=−log(3)2+log(2)+[logxx+1]12= -\frac{\log(3)}{2} + \log(2) + \left[\log \frac{x}{x+1}\right]_{1}^{2}=−2log(3)+log(2)+[logx+1x]12=−log(3)2+log(2)+(log23−log12)= -\frac{\log(3)}{2} + \log(2) + \left(\log \frac{2}{3} - \log \frac{1}{2}\right)=−2log(3)+log(2)+(log32−log21)=−log(3)2+log(2)+log23+log2= -\frac{\log(3)}{2} + \log(2) + \log \frac{2}{3} + \log 2=−2log(3)+log(2)+log32+log2=2log(2)−log(3)2+log(23)= 2\log(2) - \frac{\log(3)}{2} + \log\left(\frac{2}{3}\right)=2log(2)−2log(3)+log(32)=2log(2)−log(3)2+log(2)−log(3)= 2\log(2) - \frac{\log(3)}{2} + \log(2) - \log(3)=2log(2)−2log(3)+log(2)−log(3)=3log(2)−32log(3)=log(23)−log(33/2)= 3\log(2) - \frac{3}{2}\log(3) = \log(2^3) - \log(3^{3/2})=3log(2)−23log(3)=log(23)−log(33/2)=log(8)−log(33)=log833=log839= \log(8) - \log(3\sqrt{3}) = \log\frac{8}{3\sqrt{3}} = \log\frac{8\sqrt{3}}{9}=log(8)−log(33)=log338=log983与えられた等式 ∫12log(x+1)x2dx=logc\int_{1}^{2} \frac{\log(x+1)}{x^2} dx = \log c∫12x2log(x+1)dx=logc と比較して、logc=log839\log c = \log\frac{8\sqrt{3}}{9}logc=log983 となるので、 c=839c = \frac{8\sqrt{3}}{9}c=983 となります。3. 最終的な答えc=839c = \frac{8\sqrt{3}}{9}c=983