与えられた物理の問題は複数あり、それぞれ力学、波動、放射性崩壊に関するものである。具体的には、正弦波のパラメータの算出、月の運動に関する計算、放射性物質の半減期の計算、そして摩擦のない滑り台からの物体の運動についての考察が含まれている。
2025/7/16
1. 問題の内容
与えられた物理の問題は複数あり、それぞれ力学、波動、放射性崩壊に関するものである。具体的には、正弦波のパラメータの算出、月の運動に関する計算、放射性物質の半減期の計算、そして摩擦のない滑り台からの物体の運動についての考察が含まれている。
2. 解き方の手順
**問題5: 波動**
(1)
* 振幅: 図から [m] である。
* 波長: 図から波長は [m] である。
* 速さ: [s] で [m] 進んでいるので、速さは [m/s]。
* 周期: [s] で点線になるということは、半周期が [s] なので、周期は [s]。
* 振動数: 振動数 [Hz]。
(2) [s] での波形: 周期が [s] なので、 [s] 後の波形は [s] の波形と同じになる。
(3) 原点での媒質の振動: 原点 での媒質の振動は、時刻 [s] で から負の方向に動き始め、周期 [s] で振動する。。
(4) 正弦波の式:
ここで、、、。波が正の方向に進んでいるため。
.
**問題6: 月の運動**
(1) 万有引力:
(2) 運動方程式:
(3) 月の速さ:
(4) 月の周期:
(5) 万有引力が消滅した場合: 軌道の接線方向に離れていく (④)。
**問題8: 放射性崩壊**
(1) 微分方程式の解:
で より、。
(2) 半減期:
となる時間 を求める。
**問題9: 滑り台**
最高点は同じ。理由:力学的エネルギー保存則より、いずれの滑り台でも、出口での運動エネルギーと高さの位置エネルギーの和は同じである。したがって、最高点に達したときの高さは同じになる。
**問題10: 慣性の法則**
慣性の法則とは、外部から力を加えられない限り、静止している物体は静止し続け、運動している物体は等速直線運動を続けるという法則である。
3. 最終的な答え
**問題5**
* 振幅: [m]
* 波長: [m]
* 速さ: [m/s]
* 周期: [s]
* 振動数: [Hz]
* 正弦波の式:
**問題6**
* 万有引力:
* 月の速さ:
* 月の周期:
* 万有引力消滅後: ④
**問題8**
*
*
**問題9**
* 同じ。
* 理由:力学的エネルギー保存則による。
**問題10**
* 外部から力を加えられない限り、静止している物体は静止し続け、運動している物体は等速直線運動を続けるという法則。