$y$ が $x$ に比例し、$x = 10$ のとき $y = 6$ である。このとき、$x = -15$ のときの $y$ の値を求めなさい。

代数学比例一次関数比例定数
2025/7/16

1. 問題の内容

yyxx に比例し、x=10x = 10 のとき y=6y = 6 である。このとき、x=15x = -15 のときの yy の値を求めなさい。

2. 解き方の手順

比例の関係は y=axy = ax で表される。ここで、aa は比例定数である。
x=10x = 10 のとき y=6y = 6 であるから、
6=a106 = a \cdot 10
a=610=35a = \frac{6}{10} = \frac{3}{5}
したがって、y=35xy = \frac{3}{5}x
x=15x = -15 のとき、
y=35(15)y = \frac{3}{5} \cdot (-15)
y=3(3)y = 3 \cdot (-3)
y=9y = -9

3. 最終的な答え

y=9y = -9
よって、答えはウ。

「代数学」の関連問題

右図において、直線 $y = -2x + 14$ を①とする。直線②は点Aでy軸と交わり、そのy座標は4である。また、直線②の傾きは $\frac{1}{2}$ である。Bは直線①とx軸との交点である...

一次関数連立方程式図形と方程式交点面積
2025/7/16

与えられた二次関数について、グラフの頂点、軸を求め、グラフを描く問題です。今回は、(3) $y = -(x-3)^2$ と (4) $y = -2(x+2)^2$ を解きます。

二次関数グラフ頂点二次関数のグラフ
2025/7/16

2次方程式 $3x^2 - 4x + 1 = 0$ を解の公式を使って解きます。

二次方程式解の公式
2025/7/16

与えられた図において、直線①は $y = -2x + 14$ で表され、点Pは直線①と直線②の交点である。直線②の傾きは $\frac{1}{2}$ であり、直線②とy軸の交点Aのy座標は4である。点...

一次関数連立方程式交点座標平面
2025/7/16

与えられた2次方程式 $2x^2 + 7x + 3 = 0$ を解の公式を用いて解く。

二次方程式解の公式
2025/7/16

二次方程式 $2x^2 + 7x + 3 = 0$ を解く問題です。

二次方程式因数分解方程式解の公式
2025/7/16

与えられた分数の式 $\frac{x-3}{x^2-9}$ を簡略化する問題です。

分数式因数分解式の簡略化約分
2025/7/16

与えられた分数式 $\frac{(x+2)(x-1)}{(x+1)(x+2)}$ を約分する問題です。

分数式約分代数
2025/7/16

$x^3 + y^3 + z^3$ の因数分解を求めよ。

因数分解多項式恒等式三次式
2025/7/16

りんごが $x$ 個あるところに、新たに7個加わると全部で10個になった。このことを式で表すとき、空欄に当てはまる式を書く問題です。

方程式一次方程式文章問題
2025/7/16