問題は、二次関数 $y = 2x^2 - 2$ が、基本となる二次関数 $y = 2x^2$ のグラフをどのように平行移動したものかを答える問題です。また、与えられた二次関数の頂点の座標を求める問題です。

代数学二次関数平行移動頂点グラフ
2025/7/17

1. 問題の内容

問題は、二次関数 y=2x22y = 2x^2 - 2 が、基本となる二次関数 y=2x2y = 2x^2 のグラフをどのように平行移動したものかを答える問題です。また、与えられた二次関数の頂点の座標を求める問題です。

2. 解き方の手順

* y=2x22y = 2x^2 - 2 は、y=2x2y = 2x^2 のグラフを y軸方向に -2 だけ平行移動したものです。
y=f(x)y = f(x) のグラフをy軸方向にkkだけ平行移動したグラフの方程式は y=f(x)+ky = f(x) + k で表されます。
* 頂点は、y=2x22y = 2x^2 - 2 のグラフの最も低い点です。y=2x2y = 2x^2 の頂点は原点 (0,0)(0, 0) なので、これをy軸方向に -2 だけ平行移動すると、頂点は (0,2)(0, -2) になります。

3. 最終的な答え

y軸方向に -2 だけ平行移動したもの
頂点は (0,-2)

「代数学」の関連問題

(1) 第5項が10, 初項から第5項までの和が100である等差数列の初項と公差を求める。 (2) 等比数列 $18, -6\sqrt{3}, 6, \dots$ の第6項と、初項から第15項までの奇...

等差数列等比数列数列級数
2025/7/17

与えられた行列の(5,1)成分を用いて第5行を掃き出す問題です。 行列は $\begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 2 & -1 \\ 1 & 1...

行列掃き出し法線形代数
2025/7/17

与えられた式において、$a$, $b$, $c$ の値を求めよ。 $\frac{x^2}{x^3-3x+2} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c...

部分分数分解分数式連立方程式代数
2025/7/17

与えられた等式 $l = 2(a+bc)$ を $a$ について解きます。つまり、$a =$ の形に変形します。

式の変形一次式文字式の計算
2025/7/17

与えられた6つの連立一次方程式を消去法を用いて解く。

連立一次方程式消去法線形代数
2025/7/17

与えられた一次方程式 $\frac{1}{3}x - 6 = -\frac{5}{6}x + 8$ を解いて、$x$ の値を求める問題です。

一次方程式方程式解法計算
2025/7/17

与えられた方程式を解いて、$x$ の値を求めます。方程式は $\frac{1}{3}x - 6 = -\frac{5}{6}x + 8$ です。

一次方程式方程式計算
2025/7/17

与えられた連立一次方程式を解く問題です。連立方程式は以下の通りです。 $y = x - 7$ $2x + 3y = -1$

連立方程式代入法一次方程式
2025/7/17

与えられた連立方程式を $p$ と $q$ について解く問題です。 連立方程式は以下の通りです。 $ \begin{cases} p = -\frac{1}{5}q + 17 \\ p = 2q + ...

連立方程式代入法一次方程式
2025/7/17

連立方程式を解く問題です。 $ \begin{cases} 3x + 2y = 4 \\ 5x - 3y = -25 \end{cases} $

連立方程式加減法代入
2025/7/17