$(x+4)^4$ の展開式における $x^3$ の係数を求める問題です。

代数学二項定理展開多項式
2025/7/17

1. 問題の内容

(x+4)4(x+4)^4 の展開式における x3x^3 の係数を求める問題です。

2. 解き方の手順

二項定理を使います。二項定理は、
(a+b)n=k=0n(nk)ankbk(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k
と表されます。
今回の問題では、a=xa = x, b=4b = 4, n=4n = 4 です。
x3x^3 の係数を求めるので、nk=3n-k = 3 となる kk を探します。
4k=34-k = 3 より k=1k = 1 です。
したがって、x3x^3 の項は、
(41)x4141=(41)x34\binom{4}{1} x^{4-1} 4^1 = \binom{4}{1} x^3 \cdot 4
となります。
(41)=4!1!(41)!=4!1!3!=4×3×2×11×(3×2×1)=4\binom{4}{1} = \frac{4!}{1!(4-1)!} = \frac{4!}{1!3!} = \frac{4 \times 3 \times 2 \times 1}{1 \times (3 \times 2 \times 1)} = 4
よって、x3x^3 の項は、4x34=16x34 \cdot x^3 \cdot 4 = 16x^3 となり、x3x^3 の係数は16です。

3. 最終的な答え

16

「代数学」の関連問題

問題は以下の通りです。 1. $2^{\frac{3}{2}} \times 4^{\frac{3}{4}} \times 8^{-\frac{1}{3}}$ の値を求め、選択肢から選ぶ。

指数計算対数不等式指数関数対数関数
2025/7/17

(1) 第5項が10, 初項から第5項までの和が100である等差数列の初項と公差を求める。 (2) 等比数列 $18, -6\sqrt{3}, 6, \dots$ の第6項と、初項から第15項までの奇...

等差数列等比数列数列級数
2025/7/17

与えられた行列の(5,1)成分を用いて第5行を掃き出す問題です。 行列は $\begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 2 & -1 \\ 1 & 1...

行列掃き出し法線形代数
2025/7/17

与えられた式において、$a$, $b$, $c$ の値を求めよ。 $\frac{x^2}{x^3-3x+2} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c...

部分分数分解分数式連立方程式代数
2025/7/17

与えられた等式 $l = 2(a+bc)$ を $a$ について解きます。つまり、$a =$ の形に変形します。

式の変形一次式文字式の計算
2025/7/17

与えられた6つの連立一次方程式を消去法を用いて解く。

連立一次方程式消去法線形代数
2025/7/17

与えられた一次方程式 $\frac{1}{3}x - 6 = -\frac{5}{6}x + 8$ を解いて、$x$ の値を求める問題です。

一次方程式方程式解法計算
2025/7/17

与えられた方程式を解いて、$x$ の値を求めます。方程式は $\frac{1}{3}x - 6 = -\frac{5}{6}x + 8$ です。

一次方程式方程式計算
2025/7/17

与えられた連立一次方程式を解く問題です。連立方程式は以下の通りです。 $y = x - 7$ $2x + 3y = -1$

連立方程式代入法一次方程式
2025/7/17

与えられた連立方程式を $p$ と $q$ について解く問題です。 連立方程式は以下の通りです。 $ \begin{cases} p = -\frac{1}{5}q + 17 \\ p = 2q + ...

連立方程式代入法一次方程式
2025/7/17