2次方程式 $4x^2 + (a+2)x + 1 = 0$ が重解を持つとき、定数 $a$ の値を求める。

代数学二次方程式判別式重解方程式の解
2025/7/17

1. 問題の内容

2次方程式 4x2+(a+2)x+1=04x^2 + (a+2)x + 1 = 0 が重解を持つとき、定数 aa の値を求める。

2. 解き方の手順

2次方程式が重解を持つ条件は、判別式 DDD=0D=0 となることです。
判別式 DD は、2次方程式 Ax2+Bx+C=0Ax^2 + Bx + C = 0 に対して D=B24ACD = B^2 - 4AC で定義されます。
今回の問題では、A=4A = 4, B=a+2B = a+2, C=1C = 1 なので、
判別式 DD
D=(a+2)2441D = (a+2)^2 - 4 \cdot 4 \cdot 1
となります。
重解を持つためには、D=0D = 0 である必要があるので、
(a+2)216=0(a+2)^2 - 16 = 0
(a+2)2=16(a+2)^2 = 16
a+2=±4a+2 = \pm 4
したがって、a+2=4a+2 = 4 または a+2=4a+2 = -4 となります。
a+2=4a+2 = 4 のとき、a=42=2a = 4-2 = 2
a+2=4a+2 = -4 のとき、a=42=6a = -4-2 = -6

3. 最終的な答え

a=2,6a = 2, -6

「代数学」の関連問題

与えられた二次関数 $y = 3x^2 + 6x - 2$ を平方完成し、頂点の座標を求める問題です。

二次関数平方完成頂点関数のグラフ
2025/7/17

次の連立1次方程式を逆行列を用いて解く。 (1) $ \begin{cases} x - 2y = -1 \\ x + y - z = 2 \\ -5x + 5y + 2z = 0 \end{case...

線形代数連立方程式逆行列行列式
2025/7/17

直線 $y = -2x$ と平行な直線を、次の3つの選択肢の中から選ぶ問題です。 (1) $y = 2x - 3$ (2) $y = -2x + 4$ (3) $2x + y + 5 = 0$

一次関数直線傾き平行
2025/7/17

与えられた点と傾きを持つ直線の方程式を求める問題です。具体的には、以下の2つの問題を解きます。 (1) 点 (2, 4) を通り、傾きが 3 の直線 (2) 点 (-3, 1) を通り、傾きが -2 ...

直線の方程式傾き一次関数
2025/7/17

与えられた分数の分母 $\sqrt{3}+\sqrt{2}+1$ を有理化せよ。与えられた分数は $\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}+1}$ である。

有理化分数平方根
2025/7/17

与えられた連立1次方程式について、以下の2つの問いに答えます。 (1) 係数行列および拡大係数行列の階数を求めます。 (2) 連立方程式の解を求めます。 与えられた連立1次方程式は次の通りです。 $\...

線形代数連立一次方程式行列階数
2025/7/17

与えられた連立一次方程式について、以下の2つの問題を解きます。 (1) 係数行列と拡大係数行列の階数を求めます。 (2) 連立一次方程式の解を求めます。 与えられた連立一次方程式は以下の通りです。 $...

線形代数連立一次方程式行列階数行基本変形
2025/7/17

(1) $\sqrt{\frac{180}{n}}$ が整数となるような2桁の自然数 $n$ の値をすべて求めよ。 (2) 連続する6個の偶数の積 $k = 2 \times 4 \times \cd...

平方根整数の性質素因数分解2次方程式
2025/7/17

与えられた2次方程式 $x^2 + 6x + 5 = 0$ を解き、その解を求める問題です。

二次方程式因数分解解の公式
2025/7/17

一次方程式 $3x + 1 = 0$ を解き、$x$ の値を求めます。答えが分数になる場合は、小数で答える必要があります。

一次方程式方程式解法
2025/7/17