袋の中に白球が9個、黒球が5個入っている。この袋から同時に5個の球を取り出すとき、白球が3個、黒球が2個取り出される確率を求めよ。

確率論・統計学確率組み合わせ順列
2025/7/17

1. 問題の内容

袋の中に白球が9個、黒球が5個入っている。この袋から同時に5個の球を取り出すとき、白球が3個、黒球が2個取り出される確率を求めよ。

2. 解き方の手順

この問題は、組み合わせの問題として解くことができます。
まず、袋から5個の球を取り出すすべての組み合わせの数を計算します。これは、14個の球から5個を選ぶ組み合わせの数なので、14C5_{14}C_5 で表されます。
14C5=14!5!(145)!=14!5!9!=14×13×12×11×105×4×3×2×1=14×13×11=2002_{14}C_5 = \frac{14!}{5!(14-5)!} = \frac{14!}{5!9!} = \frac{14 \times 13 \times 12 \times 11 \times 10}{5 \times 4 \times 3 \times 2 \times 1} = 14 \times 13 \times 11 = 2002
次に、白球が3個、黒球が2個取り出される組み合わせの数を計算します。これは、9個の白球から3個を選ぶ組み合わせの数と、5個の黒球から2個を選ぶ組み合わせの数の積で表されます。それぞれ 9C3_{9}C_35C2_{5}C_2 で表されます。
9C3=9!3!(93)!=9!3!6!=9×8×73×2×1=3×4×7=84_{9}C_3 = \frac{9!}{3!(9-3)!} = \frac{9!}{3!6!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 3 \times 4 \times 7 = 84
5C2=5!2!(52)!=5!2!3!=5×42×1=5×2=10_{5}C_2 = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = \frac{5 \times 4}{2 \times 1} = 5 \times 2 = 10
したがって、白球が3個、黒球が2個取り出される組み合わせの数は、 84×10=84084 \times 10 = 840 です。
求める確率は、白球が3個、黒球が2個取り出される組み合わせの数を、すべての組み合わせの数で割ることで得られます。
P(白3個, 黒2個)=8402002P(\text{白3個, 黒2個}) = \frac{840}{2002}
これを約分します。
8402002=4201001=60143\frac{840}{2002} = \frac{420}{1001} = \frac{60}{143}

3. 最終的な答え

60143\frac{60}{143}

「確率論・統計学」の関連問題

問題文は、ある人がじゃんけんをする際にチョキを出す確率について考察するため、サイコロを使った実験を行っています。実験結果のデータから、第1四分位数、第3四分位数を求め、外れ値を判定し、外れ値の個数を求...

四分位数外れ値データの分析統計
2025/7/17

8本のくじの中に当たりくじが3本入っている。Aが1本くじを引き、引いたくじは元に戻さない。その後にBが1本くじを引くとき、Bが当たる確率を求めよ。

確率条件付き確率くじ引き
2025/7/17

現在価格10000円の商品Sを2か月後に10000円で買う権利のプレミアムを求める問題です。商品Sの1か月後の価格は、元の価格に比べて60%の確率で1割上昇、10%の確率で不変、30%の確率で1割下落...

確率期待値金融工学オプション
2025/7/17

ある企業に対し、信用度に応じてAまたはBの格付けがされる。格付けされた企業の1年後の格付けの推移が確率で与えられている。現在Aに格付けされている企業が3年以内にランク外になる確率を求める問題である。

確率状態遷移確率推移
2025/7/17

20人の生徒に対して行った2種類のテストの得点x, yに関する相関表が与えられている。 (1) x, yの平均値 $\bar{x}$, $\bar{y}$ をそれぞれ求める。 (2) x, yの標準偏...

相関平均標準偏差共分散相関係数
2025/7/17

80個のデータがあり、そのうち20個の平均値が16、分散が24です。残りの60個の平均値は12、分散は28です。このデータ全体の平均値と分散を求めます。

平均値分散データ分析統計
2025/7/17

与えられたヒストグラムは、20人の学生が受けたテストのスコア分布を示しています。このヒストグラムから、平均値、中央値、最頻値、および標準偏差を求めます。標準偏差は小数点以下第1位で四捨五入して整数値に...

統計ヒストグラム平均中央値最頻値標準偏差
2025/7/17

80個のデータがあり、そのうち20個のデータの平均は16、分散は24。残りの60個のデータの平均は12、分散は28である。この80個のデータ全体の平均と分散を求めよ。

平均分散統計データの分析
2025/7/17

20人の学生が受けたテストのスコア分布がグラフで与えられています。このデータから、平均値、中央値、最頻値、標準偏差を求めます。標準偏差は小数点以下第一位を四捨五入して整数値にします。

統計平均値中央値最頻値標準偏差データ分析
2025/7/17

ある工場で生産される製品の不良品の割合を推定する問題です。二項分布に従う不良品の個数 $X$ を用いて、不良品の割合 $p$ を推定し、信頼区間を求めます。また、仮説検定を行い、与えられたデータから ...

確率統計的推測二項分布仮説検定信頼区間
2025/7/17