次の不定積分を求めよ。 (1) $\int (5x^4 + \frac{4}{x} - \frac{1}{x^4} - 2) dx$ (2) $\int (4x^3 + 3x^{1/2} - 1) dx$ (3) $\int \frac{\sqrt{x} - \frac{1}{\sqrt{x}}}{2} dx$解析学積分不定積分微分積分2025/7/171. 問題の内容次の不定積分を求めよ。(1) ∫(5x4+4x−1x4−2)dx\int (5x^4 + \frac{4}{x} - \frac{1}{x^4} - 2) dx∫(5x4+x4−x41−2)dx(2) ∫(4x3+3x1/2−1)dx\int (4x^3 + 3x^{1/2} - 1) dx∫(4x3+3x1/2−1)dx(3) ∫x−1x2dx\int \frac{\sqrt{x} - \frac{1}{\sqrt{x}}}{2} dx∫2x−x1dx2. 解き方の手順(1)∫(5x4+4x−1x4−2)dx=∫(5x4+4x−1−x−4−2)dx\int (5x^4 + \frac{4}{x} - \frac{1}{x^4} - 2) dx = \int (5x^4 + 4x^{-1} - x^{-4} - 2) dx∫(5x4+x4−x41−2)dx=∫(5x4+4x−1−x−4−2)dx=5∫x4dx+4∫1xdx−∫x−4dx−2∫dx= 5\int x^4 dx + 4\int \frac{1}{x} dx - \int x^{-4} dx - 2\int dx=5∫x4dx+4∫x1dx−∫x−4dx−2∫dx=5⋅x55+4ln∣x∣−x−3−3−2x+C= 5 \cdot \frac{x^5}{5} + 4 \ln|x| - \frac{x^{-3}}{-3} - 2x + C=5⋅5x5+4ln∣x∣−−3x−3−2x+C=x5+4ln∣x∣+13x3−2x+C= x^5 + 4 \ln|x| + \frac{1}{3x^3} - 2x + C=x5+4ln∣x∣+3x31−2x+C(2)∫(4x3+3x1/2−1)dx=4∫x3dx+3∫x1/2dx−∫dx\int (4x^3 + 3x^{1/2} - 1) dx = 4\int x^3 dx + 3\int x^{1/2} dx - \int dx∫(4x3+3x1/2−1)dx=4∫x3dx+3∫x1/2dx−∫dx=4⋅x44+3⋅x3/23/2−x+C= 4 \cdot \frac{x^4}{4} + 3 \cdot \frac{x^{3/2}}{3/2} - x + C=4⋅4x4+3⋅3/2x3/2−x+C=x4+2x3/2−x+C= x^4 + 2x^{3/2} - x + C=x4+2x3/2−x+C(3)∫x−1x2dx=12∫(x1/2−x−1/2)dx\int \frac{\sqrt{x} - \frac{1}{\sqrt{x}}}{2} dx = \frac{1}{2} \int (x^{1/2} - x^{-1/2}) dx∫2x−x1dx=21∫(x1/2−x−1/2)dx=12(∫x1/2dx−∫x−1/2dx)= \frac{1}{2} (\int x^{1/2} dx - \int x^{-1/2} dx)=21(∫x1/2dx−∫x−1/2dx)=12(x3/23/2−x1/21/2)+C= \frac{1}{2} (\frac{x^{3/2}}{3/2} - \frac{x^{1/2}}{1/2}) + C=21(3/2x3/2−1/2x1/2)+C=12(23x3/2−2x1/2)+C= \frac{1}{2} (\frac{2}{3}x^{3/2} - 2x^{1/2}) + C=21(32x3/2−2x1/2)+C=13x3/2−x1/2+C= \frac{1}{3}x^{3/2} - x^{1/2} + C=31x3/2−x1/2+C=13xx−x+C= \frac{1}{3}x\sqrt{x} - \sqrt{x} + C=31xx−x+C3. 最終的な答え(1) x5+4ln∣x∣+13x3−2x+Cx^5 + 4 \ln|x| + \frac{1}{3x^3} - 2x + Cx5+4ln∣x∣+3x31−2x+C(2) x4+2x3/2−x+Cx^4 + 2x^{3/2} - x + Cx4+2x3/2−x+C(3) 13xx−x+C\frac{1}{3}x\sqrt{x} - \sqrt{x} + C31xx−x+C